第一章:前言
随着人工智能技术的飞速发展,越来越多的AI模型可以帮助我们完成各种复杂的任务。DeepSeek是一款强大的AI模型,能够进行自然语言处理、图像识别等多种智能任务,且它的高度可定制化使得开发者可以根据自己的需求进行个性化调整。
本指南将详细讲解如何在本地环境中部署DeepSeek模型,帮助你从零开始轻松搭建一个个性化的AI助手。
第二章:部署前的准备工作
在部署DeepSeek之前,需要确保你的环境中已经具备以下一些工具和依赖:
2.1 硬件要求
- 操作系统:推荐使用Linux(Ubuntu 20.04及以上)或Windows 10以上版本。
- CPU/GPU:DeepSeek模型对于硬件要求较高,建议使用支持CUDA的NVIDIA显卡(例如RTX 20系列及以上)。
- 内存:至少8GB内存,推荐16GB或更多。
- 存储:至少50GB的可用存储空间。
2.2 软件要求
- Python 3.7及以上:DeepSeek基于Python开发,因此需要确保安装正确版本的Python。
- CUDA Toolkit(仅GPU加速):如果你计划使用GPU加速,确保安装CUDA Toolkit 11.0或以上。
- PyTorch:DeepSeek依赖于PyTorch进行深度学习计算,因此需要安装PyTorch框架。
- 依赖库:你将需要安装一些必需的Python库,具体请见后续章节。
第三章:安装环境
3.1 安装Python 3.7+
在Linux系统中,可以使用以下命令来安装Python 3.7:
sudo apt update
sudo apt install python3.7 python3.7-dev python3.7-venv python3.7-distutils
在Windows中,可以从Python官网下载并安装最新版本的Python 3.7及以上。
3.2 设置虚拟环境
虚拟环境能够帮助你隔离不同项目的依赖,避免版本冲突。创建虚拟环境的步骤如下:
- 创建虚拟环境:
python3 -m venv deepseek-env - 激活虚拟环境:
- Linux/MacOS:
source deepseek-env/bin/activate - Windows:
.\deepseek-env\Scripts\activate
- Linux/MacOS:

最低0.47元/天 解锁文章
8432

被折叠的 条评论
为什么被折叠?



