HyperGraph(超图)

【图和超图-01】https://www.bilibili.com/video/BV1tQ4y1D7yj?vd_source=7c2b5de7032bf3907543a7675013ce3a

【超图理论与应用——XJTU高级图论研究生课程汇报】https://www.bilibili.com/video/BV1mz4y1t7gr?vd_source=7c2b5de7032bf3907543a7675013ce3a

图神经网络: 

卷积核:将下面的信息进行信息聚合得到新的信息

图神经网络:

操作与卷积(CNN)类似,但并不是规则化的;需要与邻居节点进行聚合,而不是所有的节点都可以聚合

 限制条件:只是与邻居节点相乘

缺点:当面对多个节点拥有同一属性的时候,普通图只能通过多条边将它们连接在一起,而超图结构仅用一条超边就能实现属性的关联建模,因此具有更好的表征能力 

超图:

背景:

两条边比一条边更重要,对于边属性较多的情况下,考虑给不同边赋值不同权重

问题:多种构图方式、多重边、有向图

于是,希望提出新的构图方式:

两两之间是对称的,避免有向图的问题;但图过大会产生爆炸问题

引入二元到多元概念:

二元:边 ,用来表示

多元:超图拓展了边的概念,也就是超边,用表示

超图基础知识:

超图的定义:

超图,其中,分别表示超图的节点和边:

节点和普通图节点定义相同

超边,其中,超边并不是传统意义上的edge,而是一个区域(类似于面),即一条超边可以包含多个节点;如下图用一个圈表示一个超边

权重对应于每条超边,每个超边都与一个正权重相关联

把超图节点和超边看作两种实体,可以将超图转换为对应的二分图

超图描述:

 超边:如可以连接三个节点(并不是多条边,而是二维无法绘制出的曲面)

 定义超图的关联矩阵

经典分析方法:

将超图转成普通图包含两种方法:

①星型扩展:设一个虚拟中心,将超边拆分为星形图(二分扩展)

②团扩展:一条超边的所有节点进行全连接(clique),更常用 

模块度和社区发现:

 给定分区A,模块度函数定义为如下(第一部分为边贡献,第二部分为度税):

模块最大化算法:

 包括:

(2010)GN算法,FN算法

CNM算法(Fast Greedy快速贪心)

启发式算法Louvain、ECG等

 基于传统机器学习理论(谱聚类、层次聚类)

基于动力学(随机游走InfoMap、标签传播) 

超图社区检测算法:

Kumar算法:

LS&HA算法: 

从普通图算法切换到超图算法

Hypergraph CNM算法改进:

较为传统,但是更适用于实际

分析工具与课程推荐:

菲尔兹学员复杂网络夏令营:https;//github.com/ftheberge/ComplexNetworks2019

查普图可视化分析框架HyperNetX:https://github.com/pnnl/HyperNetX

b站up主uid:26575098

 HyperNetX:超图可视化分析功能(超边绘制,二分图绘制)

超图神经网络:

https://github.com/ilonajulczuk/hypergraph 

 step1:定义超边连接,超边连接;根据节点汇聚得到超边特征

step2:根据超边连接的节点,更新节点特征

step3:最终得到每个顶点的特征 

使用超边做分子属性:

A Hypergraph Convolutional Neural Network for Molecular Properties Prediction using Functional Group

问题:三个分子的图结构相似,但实际上三个分子所表达的图属性完全不同;从图卷积神经网络来看,基本一致

解决问题:引入超图的概念

创新:构建超边;引入function group 做超边,区别三个分子

构建超边:

 步骤:

①设置中心原子:选择一个原子类型(C, N, O, P 或 S)作为中心原子

②设置相邻原子:为特定功能基团类型设置相邻原子(C, N, O, P 或 S)及其键合类型(单键、双键或三键)

③添加到超图:将中心原子和相邻原子添加到超图

④添加邻居:如果相邻原子不是碳原子和/或不是与中心原子单键相连,则将其邻居添加到超图

构建网络:

上图为正常的图卷积神经网络,得到每个节点和每个边的特征(原子内部)

下图为超图,相当于在每个组里进行一系列操作,然后在超边上更新节点特征

使用VAE的框架构建超图:

Embedding of Molecular Structure Using Molecular Hypergraph Variational Autoencoder with Metric Learning

 问题:现有的VAE框架做图结构的特征提取不太好,相似的结构并不表征相同的属性

创新点:提出Metric Learning

根据物理特性生成正样本与负样本,根据超边语法规则Parse Tree according to MHG(2019 PAMR 提出一套如何将正常结构转换为超边的方法,然后使用VAE编码)

使用超图做推荐:

Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation

 将正常图聚合成超边

再度抽象出一个新图Line Graph

 超图正常使用超图神经网络,新图正常使用图神经网络

认为超图是从原始图中得到了一种view(视角),而Line Graph是另外一种视角,这两种视角都可以表达图的信息,引入对比学习做预训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值