Reactor 响应式编程(第一篇:Reactor核心)

系列文章目录

Reactor 响应式编程(第一篇:Reactor核心)
Reactor 响应式编程(第二篇:Spring Webflux)
Reactor 响应式编程(第三篇:R2DBC)
Reactor 响应式编程(第四篇:Spring Security Reactive)



1. 快速上手

介绍
Reactor 是一个用于JVM的完全非阻塞的响应式编程框架,具备高效的需求管理(即对 “背压(backpressure)”的控制)能力。它与 Java 8 函数式 API 直接集成,比如 CompletableFutureStream, 以及 Duration。它提供了异步序列 API Flux(用于[N]个元素)和 Mono(用于 [0|1]个元素),并完全遵循和实现了“响应式扩展规范”(Reactive Extensions Specification)。
Reactor 的 reactor-ipc 组件还支持非阻塞的进程间通信(inter-process communication, IPC)。 Reactor IPC 为 HTTP(包括 Websockets)、TCP 和 UDP 提供了支持背压的网络引擎,从而适合 应用于微服务架构。并且完整支持响应式编解码(reactive encoding and decoding)。

依赖

<dependencyManagement> 
    <dependencies>
        <dependency>
            <groupId>io.projectreactor</groupId>
            <artifactId>reactor-bom</artifactId>
            <version>2023.0.0</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>
<dependencies>
    <dependency>
        <groupId>io.projectreactor</groupId>
        <artifactId>reactor-core</artifactId> 
        
    </dependency>
    <dependency>
        <groupId>io.projectreactor</groupId>
        <artifactId>reactor-test</artifactId> 
        <scope>test</scope>
    </dependency>
</dependencies>

2. 响应式编程

响应式编程是一种关注于数据流(data streams)变化传递(propagation of change)异步编程方式。 这意味着它可以用既有的编程语言表达静态(如数组)或动态(如事件源)的数据流。

了解历史:

  • 在响应式编程方面,微软跨出了第一步,它在 .NET 生态中创建了响应式扩展库(Reactive Extensions library, Rx)。接着 RxJava 在JVM上实现了响应式编程。后来,在 JVM 平台出现了一套标准的响应式 编程规范,它定义了一系列标准接口和交互规范。并整合到 Java 9 中(使用 Flow 类)。
  • 响应式编程通常作为面向对象编程中的“观察者模式”(Observer design pattern)的一种扩展。 响应式流(reactive streams)与“迭代子模式”(Iterator design pattern)也有相通之处, 因为其中也有 Iterable-Iterator 这样的对应关系。主要的区别在于,Iterator 是基于 “拉取”(pull)方式的,而响应式流是基于“推送”(push)方式的。
  • 使用 iterator 是一种“命令式”(imperative)编程范式,即使访问元素的方法是 Iterable 的唯一职责。关键在于,什么时候执行 next() 获取元素取决于开发者。在响应式流中,相对应的 角色是 Publisher-Subscriber,但是 当有新的值到来的时候 ,却反过来由发布者(Publisher) 通知订阅者(Subscriber),这种“推送”模式是响应式的关键。此外,对推送来的数据的操作 是通过一种声明式(declaratively)而不是命令式(imperatively)的方式表达的:开发者通过 描述“控制流程”来定义对数据流的处理逻辑。
  • 除了数据推送,对错误处理(error handling)和完成(completion)信号的定义也很完善。 一个 Publisher 可以推送新的值到它的 Subscriber(调用 onNext 方法), 同样也可以推送错误(调用 onError 方法)和完成(调用 onComplete 方法)信号。 错误和完成信号都可以终止响应式流。可以用下边的表达式描述:
onNext x 0..N [onError | onComplete]

2.1 阻塞是对资源的浪费

现代应用需要应对大量的并发用户,而且即使现代硬件的处理能力飞速发展,软件性能仍然是关键因素。
广义来说我们有两种思路来提升程序性能:

  1. 并行化(parallelize) :使用更多的线程和硬件资源。[异步]
  2. 基于现有的资源来 提高执行效率 。

通常,Java开发者使用阻塞式(blocking)编写代码。这没有问题,在出现性能瓶颈后, 我们可以增加处理线程,线程中同样是阻塞的代码。但是这种使用资源的方式会迅速面临 资源竞争和并发问题。
更糟糕的是,阻塞会浪费资源。具体来说,比如当一个程序面临延迟(通常是I/O方面, 比如数据库读写请求或网络调用),所在线程需要进入 idle 状态等待数据,从而浪费资源。
所以,并行化方式并非银弹。这是挖掘硬件潜力的方式,但是却带来了复杂性,而且容易造成浪费。


2.2 异步可以解决问题吗?

第二种思路——提高执行效率——可以解决资源浪费问题。通过编写 异步非阻塞 的代码, (任务发起异步调用后)执行过程会切换到另一个 使用同样底层资源 的活跃任务,然后等 异步调用返回结果再去处理。

但是在 JVM 上如何编写异步代码呢?Java 提供了两种异步编程方式:

  • 回调(Callbacks) :异步方法没有返回值,而是采用一个 callback 作为参数(lambda 或匿名类),当结果出来后回调这个 callback。常见的例子比如 Swings 的 EventListener
  • Futures :异步方法 立即 返回一个 Future<T>,该异步方法要返回结果的是 T 类型,通过 Future 封装。这个结果并不是 立刻 可以拿到,而是等实际处理结束才可用。比如, ExecutorService 执行 Callable<T> 任务时会返回 Future 对象。

这些技术够用吗?并非对于每个用例都是如此,两种方式都有局限性。
回调很难组合起来,因为很快就会导致代码难以理解和维护(即所谓的“回调地狱(callback hell)”)。
考虑这样一种情景:

  • 在用户界面上显示用户的5个收藏,或者如果没有任何收藏提供5个建议。
  • 这需要3个 服务(一个提供收藏的ID列表,第二个服务获取收藏内容,第三个提供建议内容):
    回调地狱(Callback Hell)的例子:
userService.getFavorites(userId, new Callback<List<String>>() { 
  public void onSuccess(List<String> list) { 
    if (list.isEmpty()) { 
      suggestionService.getSuggestions(new Callback<List<Favorite>>() {
        public void onSuccess(List<Favorite> list) { 
          UiUtils.submitOnUiThread(() -> { 
            list.stream()
                .limit(5)
                .forEach(uiList::show); 
            });
        }

        public void onError(Throwable error) { 
          UiUtils.errorPopup(error);
        }
      });
    } else {
      list.stream() 
          .limit(5)
          .forEach(favId -> favoriteService.getDetails(favId, 
            new Callback<Favorite>() {
              public void onSuccess(Favorite details) {
                UiUtils.submitOnUiThread(() -> uiList.show(details));
              }

              public void onError(Throwable error) {
                UiUtils.errorPopup(error);
              }
            }
          ));
    }
  }

  public void onError(Throwable error) {
    UiUtils.errorPopup(error);
  }
});

Reactor改造后为:

userService.getFavorites(userId) 
           .flatMap(favoriteService::getDetails) 
           .switchIfEmpty(suggestionService.getSuggestions()) 
           .take(5) 
           .publishOn(UiUtils.uiThreadScheduler()) 
           .subscribe(uiList::show, UiUtils::errorPopup); 

如果你想确保“收藏的ID”的数据在800ms内获得(如果超时,从缓存中获取)呢?在基于回调的代码中, 会比较复杂。但 Reactor 中就很简单,在处理链中增加一个 timeout 的操作符即可。

userService.getFavorites(userId)
           .timeout(Duration.ofMillis(800)) 
           .onErrorResume(cacheService.cachedFavoritesFor(userId)) 
           .flatMap(favoriteService::getDetails) 
           .switchIfEmpty(suggestionService.getSuggestions())
           .take(5)
           .publishOn(UiUtils.uiThreadScheduler())
           .subscribe(uiList::show, UiUtils::errorPopup);

额外扩展:
Futures 比回调要好一点,但即使在 Java 8 引入了 CompletableFuture,它对于多个处理的组合仍不够好用。 编排多个 Futures 是可行的,但却不易。此外,Future 还有一个问题:当对 Future 对象最终调用 get() 方法时,仍然会导致阻塞,并且缺乏对多个值以及更进一步对错误的处理。
考虑另外一个例子,我们首先得到 ID 的列表,然后通过它进一步获取到“对应的 name 和 statistics” 为元素的列表,整个过程用异步方式来实现。
CompletableFuture 处理组合的例子

CompletableFuture<List<String>> ids = ifhIds(); 

CompletableFuture<List<String>> result = ids.thenComposeAsync(l -> { 
        Stream<CompletableFuture<String>> zip = l.stream().map(i -> { 
                 CompletableFuture<String> nameTask = ifhName(i); 
                 CompletableFuture<Integer> statTask = ifhStat(i); 
			return nameTask.thenCombineAsync(statTask, (name, stat) -> "Name " + name + " has stats " + stat);
	});
        
List<CompletableFuture<String>> combinationList = zip.collect(Collectors.toList()); 
CompletableFuture<String>[] combinationArray = combinationList.toArray(new CompletableFuture[combinationList.size()]);

CompletableFuture<Void> allDone = CompletableFuture.allOf(combinationArray); 
return allDone.thenApply(v -> combinationList.stream().map(CompletableFuture::join) .collect(Collectors.toList()));
});

List<String> results = result.join(); 
assertThat(results).contains(
			"Name NameJoe has stats 103",
            "Name NameBart has stats 104",
            "Name NameHenry has stats 105",
            "Name NameNicole has stats 106",
            "Name NameABSLAJNFOAJNFOANFANSF has stats 121");

2.3 从命令式编程到响应式编程

类似 Reactor 这样的响应式库的目标就是要弥补上述“经典”的 JVM 异步方式所带来的不足, 此外还会关注一下几个方面:

  • 可编排性(Composability) 以及 可读性(Readability)
  • 使用丰富的 操作符 来处理形如 的数据
  • 订阅(subscribe) 之前什么都不会发生
  • 背压(backpressure) 具体来说即 消费者能够反向告知生产者生产内容的速度的能力
  • 高层次 (同时也是有高价值的)的抽象,从而达到 并发无关 的效果

2.3.1 可编排性与可读性

可编排性,指的是编排多个异步任务的能力。比如我们将前一个任务的结果传递给后一个任务作为输入, 或者将多个任务以分解再汇总(fork-join)的形式执行,或者将异步的任务作为离散的组件在系统中 进行重用。
这种编排任务的能力与代码的可读性和可维护性是紧密相关的。随着异步处理任务数量和复杂度 的提高,编写和阅读代码都变得越来越困难。就像我们刚才看到的,回调模式是简单的,但是缺点 是在复杂的处理逻辑中,回调中会层层嵌入回调,导致 回调地狱(Callback Hell) 。你能猜到 (或有过这种痛苦经历),这样的代码是难以阅读和分析的。
Reactor 提供了丰富的编排操作,从而代码直观反映了处理流程,并且所有的操作保持在同一层次 (尽量避免了嵌套)。

2.3.2 就像装配流水线

你可以想象数据在响应式应用中的处理,就像流过一条装配流水线。Reactor 既是传送带, 又是一个个的装配工或机器人。原材料从源头(最初的 Publisher)流出,最终被加工为成品, 等待被推送到消费者(或者说 Subscriber)。
原材料会经过不同的中间处理过程,或者作为半成品与其他半成品进行组装。如果某处有齿轮卡住, 或者某件产品的包装过程花费了太久时间,相应的工位就可以向上游发出信号来限制或停止发出原材料。

2.3.3 操作符(Operators)

在 Reactor 中,操作符(operator)就像装配线中的工位(操作员或装配机器人)。每一个操作符 对 Publisher 进行相应的处理,然后将 Publisher 包装为一个新的 Publisher。就像一个链条, 数据源自第一个 Publisher,然后顺链条而下,在每个环节进行相应的处理。最终,一个订阅者 (Subscriber)终结这个过程。请记住,在订阅者(Subscriber)订阅(subscribe)到一个 发布者(Publisher)之前,什么都不会发生

理解了操作符会创建新的 Publisher 实例这一点,能够帮助你避免一个常见的问题, 这种问题会让你觉得处理链上的某个操作符没有起作用。

虽然响应式流规范(Reactive Streams specification)没有规定任何操作符, 类似 Reactor 这样的响应式库所带来的最大附加价值之一就是提供丰富的操作符。包括基础的转换操作, 到过滤操作,甚至复杂的编排和错误处理操作。

2.3.4 subscribe() 之前什么都不会发生

在 Reactor 中,当你创建了一条 Publisher 处理链,数据还不会开始生成。事实上,你是创建了 一种抽象的对于异步处理流程的描述(从而方便重用和组装)。
当真正“订阅(subscrib)”的时候,你需要将 Publisher 关联到一个 Subscriber 上,然后 才会触发整个链的流动。这时候,Subscriber 会向上游发送一个 request 信号,一直到达源头 的 Publisher。

2.3.5 背压

向上游传递信号这一点也被用于实现 背压 ,就像在装配线上,某个工位的处理速度如果慢于流水线 速度,会对上游发送反馈信号一样。
在响应式流规范中实际定义的机制同刚才的类比非常接近:订阅者可以无限接受数据并让它的源头 “满负荷”推送所有的数据,也可以通过使用 request 机制来告知源头它一次最多能够处理 n 个元素。
中间环节的操作也可以影响 request。想象一个能够将每10个元素分批打包的缓存(buffer)操作。 如果订阅者请求一个元素,那么对于源头来说可以生成10个元素。此外预取策略也可以使用了, 比如在订阅前预先生成元素。
这样能够将“推送”模式转换为“推送+拉取”混合的模式,如果下游准备好了,可以从上游拉取 n 个元素;但是如果上游元素还没有准备好,下游还是要等待上游的推送。

2.3.6 热(Hot) vs 冷(Cold)

在 Rx 家族的响应式库中,响应式流分为“热”和“冷”两种类型,区别主要在于响应式流如何 对订阅者进行响应:

  • 一个“冷”的序列,指对于每一个 Subscriber,都会收到从头开始所有的数据。如果源头 生成了一个 HTTP 请求,对于每一个订阅都会创建一个新的 HTTP 请求。
  • 一个“热”的序列,指对于一个 Subscriber,只能获取从它开始 订阅 之后 发出的数据。不过注意,有些“热”的响应式流可以缓存部分或全部历史数据。 通常意义上来说,一个“热”的响应式流,甚至在即使没有订阅者接收数据的情况下,也可以 发出数据(这一点同 “Subscribe() 之前什么都不会发生”的规则有冲突)。

3. 核心特性

3.1 Mono和Flux

Mono: 0|1 数据流
Flux: N数据流
响应式流:元素(内容) + 信号(完成/异常);

3.2 subscribe()

自定义流的信号感知回调

flux.subscribe(
        v-> System.out.println("v = " + v), //流元素消费
        throwable -> System.out.println("throwable = " + throwable), //感知异常结束
        ()-> System.out.println("流结束了...") //感知正常结束
);

自定义消费者

flux.subscribe(new BaseSubscriber<String>() {

            // 生命周期钩子1: 订阅关系绑定的时候触发
            @Override
            protected void hookOnSubscribe(Subscription subscription) {
                // 流被订阅的时候触发
                System.out.println("绑定了..."+subscription);

                //找发布者要数据
                request(1); //要1个数据
//                requestUnbounded(); //要无限数据
            }

            @Override
            protected void hookOnNext(String value) {
                System.out.println("数据到达,正在处理:"+value);
                request(1); //要1个数据
            }


            //  hookOnComplete、hookOnError 二选一执行
            @Override
            protected void hookOnComplete() {
                System.out.println("流正常结束...");
            }

            @Override
            protected void hookOnError(Throwable throwable) {
                System.out.println("流异常..."+throwable);
            }

            @Override
            protected void hookOnCancel() {
                System.out.println("流被取消...");
            }

            @Override
            protected void hookFinally(SignalType type) {
                System.out.println("最终回调...一定会被执行");
            }
        });

3.3 流的取消

消费者调用 cancle() 取消流的订阅;

        Flux<String> flux = Flux.range(1, 10)
                .map(i -> {
                    System.out.println("map..."+i);
                    if(i==9) {
                        i = 10/(9-i); //数学运算异常;  doOnXxx
                    }
                    return "哈哈:" + i;
                }); //流错误的时候,把错误吃掉,转为正常信号


//        flux.subscribe(); //流被订阅; 默认订阅;
//        flux.subscribe(v-> System.out.println("v = " + v));//指定订阅规则: 正常消费者:只消费正常元素


//        flux.subscribe(
//                v-> System.out.println("v = " + v), //流元素消费
//                throwable -> System.out.println("throwable = " + throwable), //感知异常结束
//                ()-> System.out.println("流结束了...") //感知正常结束
//        );


        // 流的生命周期钩子可以传播给订阅者。
        //  a() {
        //      data = b();
        //  }
        flux.subscribe(new BaseSubscriber<String>() {

            // 生命周期钩子1: 订阅关系绑定的时候触发
            @Override
            protected void hookOnSubscribe(Subscription subscription) {
                // 流被订阅的时候触发
                System.out.println("绑定了..."+subscription);

                //找发布者要数据
                request(1); //要1个数据
//                requestUnbounded(); //要无限数据
            }

            @Override
            protected void hookOnNext(String value) {
                System.out.println("数据到达,正在处理:"+value);
                if(value.equals("哈哈:5")){
                    cancel(); //取消流
                }
                request(1); //要1个数据
            }


            //  hookOnComplete、hookOnError 二选一执行
            @Override
            protected void hookOnComplete() {
                System.out.println("流正常结束...");
            }

            @Override
            protected void hookOnError(Throwable throwable) {
                System.out.println("流异常..."+throwable);
            }

            @Override
            protected void hookOnCancel() {
                System.out.println("流被取消...");
            }

            @Override
            protected void hookFinally(SignalType type) {
                System.out.println("最终回调...一定会被执行");
            }
        });

3.4 BaseSubscriber

自定义消费者,推荐直接编写 BaseSubscriber 的逻辑

3.5 背压(Backpressure )和请求重塑(Reshape Requests)

3.5.1 buffer:缓冲

Flux<List<Integer>> flux = Flux.range(1, 10)  //原始流10个
        .buffer(3)
        .log();//缓冲区:缓冲3个元素: 消费一次最多可以拿到三个元素; 凑满数批量发给消费者
//
//        //一次发一个,一个一个发;
// 10元素,buffer(3);消费者请求4次,数据消费完成

3.5.2 limit:限流

Flux.range(1, 1000)
    .log()
    //限流触发,看上游是怎么限流获取数据的
    .limitRate(100) //一次预取30个元素; 第一次 request(100),以后request(75)
    .subscribe();

3.6 以编程方式创建序列-Sink

Sink.next
Sink.complete

  1. 同步环境-generate
  2. 多线程-create

3.7 handle()

自定义流中元素处理规则

   //
        Flux.range(1,10)
                .handle((value,sink)->{
                    System.out.println("拿到的值:"+value);
                    sink.next("张三:"+value); //可以向下发送数据的通道
                })
                .log() //日志
                .subscribe();

3.8 自定义线程调度

响应式:响应式编程: 全异步、消息、事件回调
默认还是用当前线程,生成整个流、发布流、流操作

public void thread1(){
    Scheduler s = Schedulers.newParallel("parallel-scheduler", 4);

    final Flux<String> flux = Flux
            .range(1, 2)
            .map(i -> 10 + i)
            .log()
            .publishOn(s)
            .map(i -> "value " + i)
            ;

    //只要不指定线程池,默认发布者用的线程就是订阅者的线程;
    new Thread(() -> flux.subscribe(System.out::println)).start();
}

3.9 错误处理

命令式编程:常见的错误处理方式

3.9.1 Catch and return a static default value. 捕获异常返回一个静态默认值

try {
  return doSomethingDangerous(10);
}
catch (Throwable error) {
  return "RECOVERED";
}

onErrorReturn: 实现上面效果,错误的时候返回一个值

  1. 吃掉异常,消费者无异常感知
  2. 返回一个兜底默认值
  3. 流正常完成;
        Flux.just(1, 2, 0, 4)
                .map(i -> "100 / " + i + " = " + (100 / i))
                .onErrorReturn(NullPointerException.class,"哈哈-6666")
                .subscribe(v-> System.out.println("v = " + v),
                        err -> System.out.println("err = " + err),
                        ()-> System.out.println("流结束")); // error handling example

3.9.2 Catch and execute an alternative path with a fallback method.

吃掉异常,执行一个兜底方法;

try {
  return doSomethingDangerous(10);
}
catch (Throwable error) {
  return doOtherthing(10);
}

onErrorResume

  1. 吃掉异常,消费者无异常感知
  2. 调用一个兜底方法
  3. 流正常完成
        Flux.just(1, 2, 0, 4)
                .map(i -> "100 / " + i + " = " + (100 / i)).onErrorResume(err -> Mono.just("哈哈-777"))
                .subscribe(v -> System.out.println("v = " + v),
                        err -> System.out.println("err = " + err),
                        () -> System.out.println("流结束"));

3.9.3 Catch and dynamically compute a fallback value. 捕获并动态计算一个返回值

根据错误返回一个新值

try {
  Value v = erroringMethod();
  return MyWrapper.fromValue(v);
}
catch (Throwable error) {
  return MyWrapper.fromError(error);
}
.onErrorResume(err -> Flux.error(new BusinessException(err.getMessage()+":炸了")))
  • 吃掉异常,消费者有感知
  • 调用一个自定义方法
  • 流异常完成

3.9.4 Catch, wrap to a BusinessException, and re-throw.

捕获并包装成一个业务异常,并重新抛出

try {
  return callExternalService(k);
}
catch (Throwable error) {
  throw new BusinessException("oops, SLA exceeded", error);
}

包装重新抛出异常: 推荐用 .onErrorMap

  1. 吃掉异常,消费者有感知
  2. 抛新异常
  3. 流异常完成
.onErrorResume(err -> Flux.error(new BusinessException(err.getMessage()+":炸了")))

        Flux.just(1, 2, 0, 4)
                .map(i -> "100 / " + i + " = " + (100 / i))
                .onErrorMap(err-> new BusinessException(err.getMessage()+": 又炸了..."))
                .subscribe(v -> System.out.println("v = " + v),
                        err -> System.out.println("err = " + err),
                        () -> System.out.println("流结束"));

3.9.5 Catch, log an error-specific message, and re-throw.

捕获异常,记录特殊的错误日志,重新抛出

try {
  return callExternalService(k);
}
catch (RuntimeException error) {
  //make a record of the error
  log("uh oh, falling back, service failed for key " + k);
  throw error;
}
        Flux.just(1, 2, 0, 4)
                .map(i -> "100 / " + i + " = " + (100 / i))
                .doOnError(err -> {
                    System.out.println("err已被记录 = " + err);
                }).subscribe(v -> System.out.println("v = " + v),
                        err -> System.out.println("err = " + err),
                        () -> System.out.println("流结束"));
  • 异常被捕获、做自己的事情
  • 不影响异常继续顺着流水线传播
  • 不吃掉异常,只在异常发生的时候做一件事,消费者有感知

3.9.6 Use the finally block to clean up resources or a Java 7 “try-with-resource” construct.

        Flux.just(1, 2, 3, 4)
                .map(i -> "100 / " + i + " = " + (100 / i))
                .doOnError(err -> {
                    System.out.println("err已被记录 = " + err);
                })
                .doFinally(signalType -> {
                    System.out.println("流信号:"+signalType);
                })

3.9.7 忽略当前异常,仅通知记录,继续推进

Flux.just(1,2,3,0,5)
        .map(i->10/i)
        .onErrorContinue((err,val)->{
            System.out.println("err = " + err);
            System.out.println("val = " + val);
            System.out.println("发现"+val+"有问题了,继续执行其他的,我会记录这个问题");
        }) //发生
        .subscribe(v-> System.out.println("v = " + v),
                err-> System.out.println("err = " + err));

3.10 常用操作

filter、flatMap、concatMap、flatMapMany、transform、defaultIfEmpty、switchIfEmpty、concat、concatWith、merge、mergeWith、mergeSequential、zip、zipWith…

Context-API:响应式中的ThreadLocal
ThreadLocal机制失效

        Flux.just(1,2,3)
                .transformDeferredContextual((flux,context)->{
                    System.out.println("flux = " + flux);
                    System.out.println("context = " + context);
                    return flux.map(i->i+"==>"+context.get("prefix"));
                })
                //上游能拿到下游的最近一次数据
                .contextWrite(Context.of("prefix","哈哈"))
                //ThreadLocal共享了数据,上游的所有人能看到; Context由下游传播给上游
                .subscribe(v-> System.out.println("v = " + v));

ParallelFlux
并发流

        Flux.range(1,1000000)
                .buffer(100)
                .parallel(8)
                .runOn(Schedulers.newParallel("yy"))
.log()
.subscribe();
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值