实对称矩阵及其几大性质

实对称矩阵的主要性质:

  1. 实对称矩阵A的不同特征值对应的特征向量是正交的。

  2. 实对称矩阵A的特征值都是实数,特征向量都是实向量。

  3. n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。

  4. 若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。

  5. 可以表示为平方和:任何实对称矩阵都可以表示为一系列实数平方的和,这些实数对应于其特征值。

矩阵相似于对角矩阵的条件:

<=> 矩阵有n个线性无关的特征向量。

  1. 实对称矩阵一定有n个线性无关的特征向量。
  2. 矩阵A含有n个不相等的特征值, 那么就含有n个线性无关的特征向量。
  3. n重特征值必须含有n个线性无关的特征向量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值