实对称矩阵的主要性质:
-
实对称矩阵A的不同特征值对应的特征向量是正交的。
-
实对称矩阵A的特征值都是实数,特征向量都是实向量。
-
n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。
-
若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
-
可以表示为平方和:任何实对称矩阵都可以表示为一系列实数平方的和,这些实数对应于其特征值。
矩阵相似于对角矩阵的条件:
<=> 矩阵有n个线性无关的特征向量。
- 实对称矩阵一定有n个线性无关的特征向量。
- 矩阵A含有n个不相等的特征值, 那么就含有n个线性无关的特征向量。
- n重特征值必须含有n个线性无关的特征向量。