Pytorch之nn.linear层

Pytorch之nn.linear层

1.二维:

注意:改变的是最后一维列数

X = torch.rand(2, 4)
net1 = nn.Sequential(nn.Linear(4, 3))
d = net1(X)
print(d)

输出:
tensor([[-0.4811, -0.2753,  0.4857],
        [-0.2339, -0.1274,  0.4677]], grad_fn=<AddmmBackward>)

1.三维:

注意:改变的是最后一维列数

X = torch.rand(3, 2, 4)

输出:
tensor([[[0.1390, 0.2656, 0.5775, 0.0419],
         [0.1601, 0.2080, 0.6637, 0.9871]],

        [[0.3458, 0.6473, 0.2802, 0.8923],
         [0.1926, 0.1190, 0.8961, 0.2184]],

        [[0.5982, 0.2578, 0.3267, 0.9850],
         [0.8681, 0.9482, 0.6696, 0.1949]]])
         
net1 = nn.Sequential(nn.Linear(4, 3))
d= net1(X)
d  
输出:
tensor([[[ 0.0062,  0.3436,  0.0684],
         [-0.0757,  0.4480,  0.4901]],

        [[-0.0655,  0.6235,  0.5633],
         [-0.0134,  0.3415,  0.0643]],

        [[ 0.0011,  0.5260,  0.6617],
         [-0.0137,  0.7969,  0.1548]]], grad_fn=<AddBackward0>)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想要躺平的一枚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值