FCN全连接卷积网络(5)--Fully Convolutional Networks for Semantic Segmentation阅读(相关工作部分)

相关工作

相关工作

1.重新设计和微调现有的分类模型来指导语义分割的密集预测内容。

2.虽然进去已有研究团队将卷积网络应用到密集预测任务当中,但是这些方面存在着一些不足,入感知范围有限、需要传统方法进行后处理等。

3.与现有网络不同,FCN使用图像分类作为监督式预训练来调整和扩展深度分类结构,并通过全卷积网络进行微调,目的是从整个输入图像和标签中简单高效的学习特征。

4.FCN将各层的特征融合在一起,旨在将全局特征和局部特征相结合,达到让网络自发微调的效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CUHK-SZ-relu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值