目标检测算法基础介绍---(2)传统目标检测(笔记)

本文介绍了传统目标检测的基本流程,包括Viola-Jones的人脸检测、HOG+SVM的行人检测以及DPM物体检测。Viola-Jones使用Adaboost算法训练人脸分类器;HOG特征结合SVM进行行人检测;DPM通过有符号和无符号梯度计算特征,并采用Latent SVM训练。非极大值抑制(NMS)用于消除多余检测框,Soft-NMS作为改进算法提高检测精度。
摘要由CSDN通过智能技术生成

传统目标检测算法基本流程
在这里插入图片描述
候选框的提取通常采用滑动窗口的方法。

滑动窗口方法:首先对输入图像进行不同窗口大小的滑窗进行从左往右、从上到下的滑动。每次滑动时候对当前窗口执行分类器(分类器是事先训练好的)。如果当前窗口得到较高的分类概率,则认为检测到了物体。对每个不同窗口大小的滑窗都进行检测后,会得到不同窗口检测到的物体标记,这些窗口大小会存在重复较高的部分,最后采用非极大值抑制(Non-Maximum Suppression, NMS)的方法进行筛选。

特征提取:
底层特征:颜色、纹理…
中层次特征:基于低层特征进行机器学习挖掘后的那些特征。
高层次特征:将低层次特征或者中层次特征进一步挖掘和表示后的特征,如:人是否戴帽子戴眼镜什么的。

(1) Viola-Jones(人脸检测)

  • Harr特征提取
  • 训练人脸分类器(Adaboost算法等)
  • 滑动窗口 (问题:互动窗口的步长好大小)

Haar特征
主要是差分。
四种基本特征:
在这里插入图片描述
value=白 - 黑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值