传统目标检测算法基本流程
候选框的提取通常采用滑动窗口的方法。
滑动窗口方法:首先对输入图像进行不同窗口大小的滑窗进行从左往右、从上到下的滑动。每次滑动时候对当前窗口执行分类器(分类器是事先训练好的)。如果当前窗口得到较高的分类概率,则认为检测到了物体。对每个不同窗口大小的滑窗都进行检测后,会得到不同窗口检测到的物体标记,这些窗口大小会存在重复较高的部分,最后采用非极大值抑制(Non-Maximum Suppression, NMS)的方法进行筛选。
特征提取:
底层特征:颜色、纹理…
中层次特征:基于低层特征进行机器学习挖掘后的那些特征。
高层次特征:将低层次特征或者中层次特征进一步挖掘和表示后的特征,如:人是否戴帽子戴眼镜什么的。
(1) Viola-Jones(人脸检测)
- Harr特征提取
- 训练人脸分类器(Adaboost算法等)
- 滑动窗口 (问题:互动窗口的步长好大小)
Haar特征
主要是差分。
四种基本特征:
value=白 - 黑