【论文笔记】--基于深度学习的目标检测算法综述

本文综述了基于深度学习的目标检测算法,包括两阶段和一阶段方法。两阶段算法如R-CNN系列,虽然精度高但速度慢;一阶段算法如YOLO系列则在速度上有优势但可能牺牲部分精度。未来研究方向包括小样本学习、弱监督学习和3D目标检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于深度学习的目标检测算法综述

摘要

  对目标检测算法进行对比,研究两阶段与一阶段算法的发展过程,提出未来发展方向。目标检测包括分类和定位,传统算法使用滑动窗口选择候选区初步定位,通过局部二值模式、方向梯度直方图等进行特征提取,通过支持向量机、Adaboost算法进行分类。传统算法效率与准确率低,鲁棒性差,深度学习算法成为热门。

两阶段目标检测

  区域提取算法核心是卷积神经网络CNN,先利用CNN骨干提取特征,然后找出候选区域,最后滑动窗口确定目标类别与位置。

  • R-CNN首先通过 SS 算法提取 2k 个左右的感兴趣区域,再对感兴趣区域进行特征提取。存在缺陷:感兴趣区域彼此之间权值无法共享,存在重复计算,中间数据需单独保存占用资源,对输入图片强制缩放影响检测准确度。
  • SPP-NET在最后一个卷积层和第一个全连接层之间做些处理,保证输入全连接层的尺寸一致即可解决输入图像尺寸受限的问题。SPP-NET候选区域包含整张图像,只需通过一次卷积网络即可得到整张图像和所有候选区域的特征。
  • Fast R-CNN借鉴SPP-NET的特征金字塔,提出ROI Pooling吧各种尺寸的候选区域特征图映射成统一尺度的特征向量,首先,将不同大小的候选区域都切分成M×N块,再对每块都进行max pooling得到1个值。这样,所有候选区域特征图就都统一成M×N维的特征向量了。但是,利用SS算法产生候选框对时间消耗非常大。
  • Faster R-CNN是先用CNN骨干网提取图像特征,由RPN网络和后续的检测器共享,特征图进入RPN网络后,对每个特征点预设9个不同尺度和形状的锚盒,计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值