opencv图像处理(十二)图像金字塔

"""
cv2.pyrUp(),cv2.pyrDown()
图像金字塔简而言之是缩放图像尺寸的
两种类型:高斯金字塔和拉普拉斯金字塔
两种类型的金字塔:
①高斯金字塔:用于下采样。高斯金字塔是最基本的图像塔。原理:首先将原图像作为最底层图像G0(高斯金字塔的第0层),利用高斯核(5*5)对其进行卷积,然后对卷积后的图像进行下采样(去除偶数行和列)得到上一层图像G1,将此图像作为输入,重复卷积和下采样操作得到更上一层图像,反复迭代多次,形成一个金字塔形的图像数据结构,即高斯金字塔。

②拉普拉斯金字塔:用于重建图像,也就是预测残差,对图像进行最大程度的还原。比如一幅小图像重建为一幅大图,原理:用高斯金字塔的每一层图像减去其上一层图像上采样并高斯卷积之后的预测图像,得到一系列的差值图像即为 LP 分解图像。

两种类型的采样:

①上采样:就是图片放大(所谓上嘛,就是变大),使用PryUp函数。    上采样步骤:先将图像在每个方向放大为原来的两倍,新增的行和列用0填充,再使用先前同样的内核与放大后的图像卷积,获得新增像素的近似值。

②下采样:就是图片缩小(所谓下嘛,就是变小),使用PryDown函数。下采样将步骤:先对图像进行高斯内核卷积 ,再将所有偶数行和列去除。

总之,上、下采样都存在一个严重的问题,那就是图像变模糊了,因为缩放的过程中发生了信息丢失的问题。要解决这个问题,就得用拉普拉斯金字塔。
"""
import cv2 as cv
#高斯金字塔
def pyramid_demo(image):
    level = 3      #设置金字塔的层数为3
    temp = image.copy()  #拷贝图像
    pyramid_images = []  #建立一个空列表
    for i in range(level):
        dst = cv.pyrDown(temp)      #先对图像进行高斯平滑,然后再进行降采样(将图像尺寸行和列方向缩减一半)
        pyramid_images.append(dst)  #在列表末尾添加新的对象
        cv.imshow("pyramid"+str(i), dst)
        # cv.waitKey(0)
        temp = dst.copy()
    return pyramid_images


#拉普拉斯金字塔
def lapalian_demo(image):
    pyramid_images = pyramid_demo(image)    #做拉普拉斯金字塔必须用到高斯金字塔的结果
    level = len(pyramid_images)
    # print(level)
    # print(pyramid_images[0].shape[:2])
    # print(pyramid_images[1].shape[:2])
    # print(pyramid_images[2].shape[:2])
    # print(image.shape[:2])
    # exit()
    for i in range(level-1, -1, -1):
        # print(i)
        if (i-1) < 0:
            expand = cv.pyrUp(pyramid_images[i])
            lpls = cv.subtract(image, expand)
            cv.imshow("lapalian_down_"+str(i), lpls)
            cv.imshow("lapalian_down_"+str(i), expand)
        else:
            expand = cv.pyrUp(pyramid_images[i])
            # lpls = cv.subtract(pyramid_images[i-1],expand)#尺寸不一致(116, 174, 3),(115, 173, 3)

            # cv.imshow("lapalian_down_"+str(i), lpls)
            cv.imshow("lapalian_down_"+str(i), expand)
            cv.waitKey(0)

src = cv.imread('cat.jpg')
cv.namedWindow('input_image', cv.WINDOW_AUTOSIZE)     #设置为WINDOW_NORMAL可以任意缩放
cv.imshow('input_image',src)
# cv.waitKey(0)
# exit()
pyramid_demo(src)
# exit()
lapalian_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值