高等概率论 Chapter 1. Introduction

这篇博客介绍了概率论的基本概念,包括随机实验、事件、概率空间和概率的定义。通过实例解释了如何从重复实验中观察到的频率来理解概率,并引入了随机变量的概念及其概率分布。此外,还探讨了随机变量的法律,即它在目标空间上的概率分布。
摘要由CSDN通过智能技术生成

Chapter 1. Introduction

欢迎大家来我的github下载源码呀,https://github.com/Berry-Wen/statistics-note-system

Introduction

Random Experiments

  1. Output can not be surely predicted in advance;
  2. When one repeats the same experiment a large number of times one can observe some “regularity” in the average output

The state space

This is the set of all possible outcomes of the experiment, and it is usually denoted by Ω \Omega Ω

The events

An “event” is a property which can be observed either to hold or not to hold after the experiment is done.

In mathematical terms, an event is a subset of Ω \Omega Ω. If A A A and B B B are two events, then,

  • the contrary event is interpreted as the complement set A C A^C AC

  • the event " A A A or B B B " is interpreted as the union A ∪ B A \cup B AB

  • the event " A A A and B B B " is interpreted as the intersection A ∩ B A \cap B AB

  • the sure event is Ω \Omega Ω

  • an elementary event is a “singleton”

    • i.e. a subset { ω } \left\{ \omega\right\} {ω} containing a single outcome ω \omega ω of Ω \Omega Ω
  • A \mathcal{A} A: the family of all events.

  • 2 Ω 2^{\Omega} 2Ω :the set of all subsets of Ω \Omega Ω


The family A \mathcal{A} A should be “stable” by the logical operations described above:


If A , B ∈ A A,B \in \mathcal{A} A,BA , then we must have
A C ∈ A , A ∩ B ∈ A , A ∪ B ∈ A A^{C} \in \mathcal{A}, \qquad A \cap B \in \mathcal{A}, \qquad A \cup B \in \mathcal{A} ACA,ABA,ABA

and also
Ω ∈ A a n d ∅ ∈ A \Omega \in \mathcal{A} \quad and \quad \emptyset \in \mathcal{A} ΩAandA


The probability

With each event A A A one associates a number denoted by P ( A ) P(A) P(A) and called the “probability of A”

This number measures the likelihood of the event A A A to be realized a priori , before performing the experiment. It is chosen between 0 and 1, and the most likely the event is, the closer to 1 this number is.

To get an idea of the properties of these numbers, one can imagine that they the limits of the “frequency” with which the events are realized:

Let us repeat the same experiment n n n times; the n n n outcomes might of course be different (think of n n n successive tosses of the same dice, for instance). Denote by f n ( A ) f_n(A) fn(A) the frequency with which the event A A A is realized (i.e. the number of times the event occurs, divided bu n n n)

Intuitively we have:
P ( A ) = lim ⁡ n → ∞ f n ( A ) P(A) = \lim_{n \to \infty} f_n(A) P(A)=nlimfn(A)

Form the obvious properties of frequencies, we immediately deduce that:

  1. 0 ≤ P ( A ) ≤ 1 0 \le P(A) \le 1 0P(A)1
  2. P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
  3. P ( A ∪ B ) = P ( A ) + P ( B ) i f A ∩ B = ∅ P(A \cup B) = P(A) +P(B) \quad if \quad A \cap B = \emptyset P(AB)=P(A)+P(B)ifAB=

A mathematical model for our experiment is thus a triple ( Ω , A , P ) (\Omega,\mathcal{A},P) (Ω,A,P) , consisting of

  • the space Ω \Omega Ω
  • the family A \mathcal{A} A of all events
  • the family of all P ( A ) P(A) P(A) for A ∈ A A \in \mathcal{A} AA

Hence we can consider that P P P is a map from A \mathcal{A} A into [ 0 , 1 ] [0,1] [0,1] , which satisfies at least the properties (2) and (3) above (plus in fact an additional property, more difficult to understand, which will be given in the next Chapter)

Random variable

A random variable is a quantity which depends on the outcome of the experiment.

In mathematical terms, this is a map from Ω \Omega Ω into a space E E E ,where often

E = R o r E = R d E = \mathbb{R} \quad or \quad E = \mathbb{R}^{d} E=RorE=Rd

Let X \mathcal{X} X be such a random variable, mapping Ω \Omega Ω into E E E . One can then transport" the probabilistic structure onto the target space E E E , by setting
P X ( B ) = P ( X − 1 ( B ) ) f o r B ⊂ E P^{\mathcal{X}} (B) = P \left( X^{-1} (B) \right) \quad for \quad B \subset E PX(B)=P(X1(B))forBE

Where X − 1 ( B ) \mathcal{X}^{-1}(B) X1(B) denotes the pre-image of B B B by X \mathcal{X} X

  • i.e. the set of all ω ∈ Ω \omega \in \Omega ωΩ such that X ( ω ) ∈ B X(\omega) \in B X(ω)B

This formula defines a new probability, denoted by P X P^{\mathcal{X}} PX , but on the space E E E instead of Ω \Omega Ω . This probability P X P^{\mathcal{X}} PX is called the law of the variable X \mathcal{X} X



Example (toss of two dice)

We have seen that Ω = { ( i , j ) : 1 ≤ i , j ≤ 6 } \Omega = \left\{ (i,j):1 \le i,j \le 6 \right\} Ω={(i,j):1i,j6} , and it is natural to take here A = 2 Ω \mathcal{A}=2^{\Omega} A=2Ω and

P ( A ) = ♯ ( A ) 36 i f A ⊂ Ω P(A) = \frac{\sharp (A)}{36} \quad if \quad A \subset \Omega P(A)=36(A)ifAΩ

Where ♯ ( A ) \sharp(A) (A) denotes the number of points in A A A

One easily verifies the properties (1),(2),(3) above, and
P ( { ω } ) = 1 36 P \left( \left\{ \omega \right\} \right) = \frac{1}{36} P({ω})=361

for each singleton

The map X : Ω → N X:\Omega \to \mathbb{N} X:ΩN defined by
X ( i , j ) = i + j X(i,j) = i+j X(i,j)=i+j
is the random variable “sum of the two dices” , and its law is
P X ( B ) = number of pairs  ( i , j )  such that  i + j ∈ B 36 P^{\mathcal{X}}(B) = \frac{ \text{number of pairs $(i,j)$ such that $i+j \in B$} }{36} PX(B)=36number of pairs (i,j) such that i+jB
(for example, P X ( { 2 } ) = P ( { 1 , 1 } ) = 1 36 P^{\mathcal{X}} \left( \left\{ 2 \right\} \right) =P \left( \left\{ 1,1 \right\} \right)=\frac{1}{36} PX({2})=P({1,1})=361, P X ( { 3 } ) = 2 36 P^{\mathcal{X}} \left( \left\{ 3 \right\} \right)=\frac{2}{36} PX({3})=362, etc …)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值