线型代数 矩阵论初步入门

范数 ∥ ⋅ ∥ \left\| \cdot \right\|

范数定义了向量在空间中的距离,使向量之间的能够比较。 其最直观的一种理解为,将组成向量的实数列表映射为一个实数。
范数是一个函数,其表示方法为 ∥ x ∥ \left\| x \right\| x

范数的定义如下:

V V V是数域 p \textbf{p} p上的线型空间, ∥ x ∥ \left\| x \right\| x是以 V V V中的向量 x x x为自变量的非负实值函数 f(x) = ∥ x ∥ \textbf{f(x)}=\left\| x \right\| f(x)=x满足:

  1. 正定性:当 x ≠ 0 x \ne0 x=0时, ∥ x ∥ > 0 \left\| x \right\| >0 x>0,当 x = 0 时 x=0时 x=0 ∥ x ∥ = 0 \left\| x \right\|=0 x=0
  2. 齐次性:对任意 k ∈ P , x ∈ V k \in \textbf{P}, x \in V kP,xV,有 ∥ k x ∥ = ∣ k ∣ ∥ x ∥ \left\| kx \right\|=\left| k \right| \left\| x \right\| kx=kx
  3. 三角不等式:对任意 x , y ∈ V x,y\in V x,yV,有 ∥ x + y ∥ ⩽ ∥ x ∥ + ∥ y ∥ \left\| x+y \right\| \leqslant \left\| x \right\|+\left\| y \right\| x+yx+y

则称 ∥ x ∥ \left\| x \right\| x为向量 x x x范数,并称定义了范数的线性空间为赋范线性空间

常用的范数有L1范数( ∥ x ∥ 1 \left\| x \right\|_1 x1)和L2范数( ∥ x ∥ 2 \left\| x \right\|_2 x2)两种:

  1. L1范数 ∥ x ∥ 1 \left\| x \right\|_1 x1
    L1范数,也被称为哈曼顿距离:一个向量中所有元素的绝对值之和。
    ∥ x ∥ 1 = ∑ ∣ x i ∣ \left\| x\right\|_1=\sum{\left| x_i \right|} x1=xi
  2. L2范数 ∥ x ∥ 2 \left\| x \right\|_2 x2
    L2范数,也被称为欧几里得范数:一个向量中所有元素取平方和后再开平方。
    ∥ x ∥ 2 = ∑ i x i 2 \left\| x\right\|_2=\sqrt{\sum_i{ x_i^2 }} x2=ixi2
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值