参数估计方法
在统计学中,由于大多数情况下难以获得总体的情况(往往已知总体服从某种分布,但是不知道分布的参数),所以人们通常选择通过样本去估计总体(因为我们可以抽样,通过样本的统计量估计总体的统计量)。统计量就是样本的数字特征,包括样本均值、样本方差、样本中心矩、样本原点矩等。
1 点估计
设总体X的分布函数形式已知,但它的一个或多个参数未知,借助于总体X的一个样本来估计总体未知参数的值的问题称为参数的点估计(Point Estimation)问题,也就是说,点估计是使用样本数据来估计总体参数的单一数值。点估计的结果是一个具体的数值,它是对未知总体参数的最佳猜测。点估计包括矩估计法和最大似然估计法。
总体参数(Population Parameter):是指描述总体特征的数值。总体是指我们感兴趣的全部个体或数据的集合,而总体参数则是对这个集合的某个特征的度量。总体参数通常是未知的,我们通过样本数据来估计这些参数。
常见的总体参数:
- 总体均值 μ \mu μ:描述总体中所有个体或数据的平均值。例如,某城市所有居民的平均收入。
- 总体方差 σ 2 \sigma^2 σ2:描述总体中所有个体或数据的离散程度,即数据与均值的偏离程度。例如,某城市所有居民收入的方差。
- 总体标准差 σ \sigma σ:总体方差的平方根,描述数据的离散程度。例如,某城市所有居民收入的标准差。
- 总体比例 p p p:描述总体中具有某种特征的个体所占的比例。例如,某城市中支持某个候选人的居民比例。
在统计推断中,估计量和估计值是两个重要的概念,用于从样本数据中推断总体参数。它们在统计分析中扮演着关键角色。下面详细解释这两个概念。
估计量(Estimator):估计量是一个统计量,用于从样本数据中估计总体参数。它是一个随机变量,因为它依赖于随机抽取的样本。估计量通常用大写字母表示,如 θ ^ \hat{\theta} θ^ 或 X ^ \hat{X} X^。
估计量的特性
- 无偏性:一个估计量 θ ^ \hat{\theta} θ^ 是无偏的,如果其期望值等于被估计的总体参数 θ \theta θ,即 E ( θ ^ ) = θ E(\hat{\theta}) = \theta E(θ^)=θ。
- 一致性:一个估计量 θ ^ \hat{\theta} θ^是一致的,如果随着样本量 n 的增加, θ ^ \hat{\theta} θ^收敛于被估计的总体参数 θ \theta θ。
- 有效性:在所有无偏估计量中,具有最小方差的估计量称为有效估计量。
常见的估计量
- 样本均值 X ˉ \bar{X} Xˉ:用于估计总体均值 μ \mu μ。 X ˉ = 1 n ∑ i = 1 n X i \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i Xˉ=n1∑i=1nXi
- 样本方差 S 2 S^2 S2:用于估计总体方差 σ 2 \sigma^2 σ2。 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 S2=n−11∑i=1n(Xi−Xˉ)2
- 样本比例 p ^ \hat{p} p^:用于估计总体比例 p p p。 p ^ = x n \hat{p} = \frac{x}{n} p^=nx ,其中 x x x 是样本中具有某特征的个体数, n n n 是样本总数。
估计值(Estimate):估计值是估计量在具体样本数据上的取值。它是一个具体的数值,用于作为总体参数的近似值。估计值通常用小写字母表示,如 θ ^ \hat{\theta} θ^ 或 x ^ \hat{x} x^。
例子:假设我们有一个样本数据集,用于估计总体均值。
- 估计量:样本均值 X ˉ \bar{X} Xˉ<