基于大语言模型的组合优化

在这里插入图片描述
摘要:组合优化(Combinatorial Optimization, CO)对于提高工程应用的效率和性能至关重要。随着问题规模的增大和依赖关系的复杂化,找到最优解变得极具挑战性。在处理现实世界的工程问题时,基于纯数学推理的算法存在局限性,无法捕捉到优化所需的上下文细微差别。本研究探索了大型语言模型(Large Language Models, LLMs)在解决工程组合优化问题中的潜力,利用其推理能力和上下文知识。我们提出了一种基于LLM的新框架,该框架结合了网络拓扑和领域知识,以优化设计结构矩阵(Design Structure Matrix, DSM)的排序——这是一个常见的组合优化问题。我们在多个DSM案例上的实验表明,所提出的方法比基准方法具有更快的收敛速度和更高的解质量。此外,结果表明,尽管LLM的选择不同,融入上下文领域知识显著提高了性能。这些发现凸显了LLMs通过结合语义和数学推理来解决复杂现实世界组合优化问题的潜力。这一方法为现实世界中的组合优化开辟了新的范式。

组合优化现行解决方案

传统上,工程中的组合优化问题通常通过以下过程来解决:首先将问题建模为数学模型,然后使用特定的算法或启发式方法进行求解,最后在实际工程背景下进行解释[4]。这种问题求解和解释阶段的分离存在局限性,无法捕捉到现实世界问题优化所需的上下文细微差别。

LLM决策理论支持

1、近年来,大型语言模型(Large Language Models, LLMs)在自然语言生成、语义理解、指令跟随

### 使用大语言模型实现情感分析的方法 #### 方法概述 为了利用大语言模型进行高效的情感分析,可以采用预训练的语言模型并微调特定于情感识别的任务。这种方法能够充分利用已有大规模语料库的优势,同时针对具体应用场景优化性能[^1]。 #### 数据准备 收集带有标签的数据集用于监督学习过程非常重要。这些数据应该覆盖正向、负向以及中立三种不同情绪类型的样本,以便让模型学会区分各种各样的表达方式。理想情况下,该数据集中还应包含来自目标领域的真实对话片段,这有助于提升实际应用效果。 #### 模型选择与调整 选用已经过广泛验证的大规模预训练语言模型作为基础架构,比如BERT、RoBERTa 或者 GPT系列等。之后,在上述基础上加入适合做二元或多类别分类任务的顶层结构(如全连接层),并通过反向传播算法进一步训练整个网络参数直至收敛。此过程中还可以引入一些技巧性的改进措施,例如: - **迁移学习**:先在一个大型通用语料上完成初步训练后再转到更专业的子域内继续迭代; - **多任务联合训练**:除了主要的目标外附加其他辅助性的小任务共同指导权重更新方向; ```python from transformers import BertTokenizer, BertForSequenceClassification import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=3) inputs = tokenizer("This movie was absolutely fantastic!", return_tensors="pt") labels = torch.tensor([1]).unsqueeze(0) # Positive sentiment label outputs = model(**inputs, labels=labels) loss = outputs.loss logits = outputs.logits ``` 这段代码展示了如何加载 BERT 预训练模型,并将其配置为三分类器来处理正面、负面和中性评论。接着定义了一个简单的输入样例及其对应的情绪标记,最后计算前向传递的结果及损失值。 #### 结果评估 构建测试集合以衡量最终系统的准确性至关重要。常用的评价指标有精确率(Precision),召回率(Recall),F1分数(F1 Score)等。此外也可以考虑绘制混淆矩阵直观展示各类别之间的预测情况。经过多次实验对比不同的超参设置组合找出最优解后即可部署上线服务供外部调用了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值