Ubuntu20.04进行CUDA11.0及对应CUDNN安装

Ubuntu20.04进行CUDA11.0及对应CUDNN安装:

基本步骤:

1.安装nvidia显卡驱动

可直接通过:软件和更新->附加驱动
选择满足CUDA版本的nvidia专有驱动->应用更改,重启即可。
(CUDA版本和显卡驱动版本对应关系:)

2.安装CUDA

2.1 CUDA下载

通过NVIDIA官网,根据硬件/系统条件,选择runfile(local),根据提供的网址下载.run文件。

wget http://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run
sudo sh cuda_11.0.2_450.51.05_linux.run

PS:
官方下载方式为通过终端运行wget下载。但笔者建议复制网址,通过网页下载,笔者通过wget下载时,到最后几秒出现段错误(核心已转储)问题,终止下载,重新运行会重新从头下载。

2.2 CUDA安装

下载完成后执行以下语句:

sudo sh cuda_11.0.2_450.51.05_linux.run

选择continue,输入accept,根据需要选择是否需要安装相应nvidia驱动(PS:在第1步安装了驱动则建议在这里取消(空格)driver安装,不然可能安装失败。)其他默认(均选中)即可。
选择install回车。
安装完成后:
通过gedit ~/.bashrcvim ~/.bashrc等,打开~/.bashrc文件,在最后添加:

export PATH=/usr/local/cuda-11.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda

保存关闭,并source ~/.bashrc

3.安装CUDNN

参考NVIDIA cuDNN v8 deb方法安装和卸载教程(Linux/Ubuntu)

3.1 CUDNN下载

官网找到需要的cudnn版本,下载cuDNN Runtime xxx/ cuDNN Developer xxx/ cuDNN Code xxx三个.deb文件(下载后为libcudnn8_8xxx.deb / libcudnn8-debxxxx.deb / libcudnn8-samplesxxx.deb)。

3.2 CUDNN安装

依次执行以下语句进行安装:

sudo dpkg -i llibcudnn8_8.0.5.39-1+cuda11.0_amd64deb
sudo dpkg -i libcudnn8-dev_8.0.5.39-1+cuda11.0_amd64.deb
sudo dpkg -i libcudnn8-samples_8.0.5.39-1+cuda11.0_amd64.deb

3.3 CUDNN测试

通过以下语句进行测试:

cp -r /usr/src/cudnn_samples_v8/ $HOME
cd  ~/cudnn_samples_v8/mnistCUDNN
sudo make clean 
sudo make
sudo ./mnistCUDNN

出现Test passe则表明cuDNN已通过程序测试,完成安装!
在这里插入图片描述

### 回答1: A:cudnn版本与cuda版本有对应关系。具体可参考NVIDIA官方网站的文档,例如CUDA 10.0对应cudnn版本为7.5.x,CUDA 10.1对应cudnn版本为7.6.x,CUDA 11.0对应cudnn版本为8.x.x。需要注意的是,不同的cuda版本和操作系统可能会有不同的cudnn版本要求。 ### 回答2: CUDA对应cuDNN版本有多个,具体选择哪个版本需要根据CUDA的版本和所需的功能来确定。 一般情况下,选择cuDNN版本时需要遵循以下原则: 1. 版本兼容性:选择的cuDNN版本应与使用的CUDA版本兼容。例如,CUDA 11.0对应cuDNN版本可以选择cuDNN 8.x系列,CUDA 10.1对应cuDNN版本可以选择cuDNN 7.x系列。 2. 功能需求:根据实际需要选择cuDNN的版本。不同版本的cuDNN可能提供了不同的功能和优化,如深度卷积神经网络(DCNN)加速、稀疏网络支持等。用户可以根据自己的需求选择合适的版本。 总的来说,要选择适合自己环境的cuDNN版本,需要考虑CUDAcuDNN的版本兼容性以及所需的功能,并在官方文档中查找相应版本的cuDNN来进行下载和安装。 ### 回答3: CUDA是一种并行计算平台和API模型,用于GPU加速计算。CUDA适用于NVIDIA的GPU,并提供了一套编程接口,使开发者可以利用GPU的并行计算能力。 而cuDNNCUDA Deep Neural Network)是NVIDIA提供的一个加速深度学习推理(inference)和训练(training)的库,它是基于CUDA深度学习库。cuDNN利用GPU的并行计算能力,加速深度学习任务的执行速度。 每个CUDA版本都会对应适用的cuDNN版本,以保证系统的兼容性和稳定性。例如,CUDA 10.0对应cuDNN版本是7.6.3,CUDA 11.0对应cuDNN版本是8.0.5。不同的CUDAcuDNN版本之间可能存在一定的依赖关系,因此在使用时需要注意版本的一致性。 总结起来,cuDNN是基于CUDA的加速深度学习库,而不同的CUDA版本会对应适用的cuDNN版本。正确选择和使用对应cuDNN版本可以提高深度学习任务的执行效率和性能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值