'''
scipy--optimize优化2.0:least_squares最小二乘法拟合
这次拟合一个非线性函数
2020.5.9
'''
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import least_squares, leastsq
x = np.linspace(-1,1,10) #生成间隔相同的10个数据
y = 3*x**2+x + np.random.rand(10) #产生y的数据,并加上一些噪声
#拟合 a*x**2+b*x+c
def residuals(p,x,y): #计算误差函数
a,b,c,d = p
wucha = y-(a*x**2+b*x+c*np.sin(x)+d)
return wucha #做二乘法时需要变成最小值的误差:原函数值-预测函数值
c = least_squares(residuals,[1,1,0,1],args=(x,y)) #func是准备求最小值的函数,[a,b,c]把参数初始化为1,0,0
print(c)
print('参数为:', c.get('x'))
Q = sum((residuals(c.get('x'),x,y))**2)
print('误差平方和:',Q)
#画出散点图
plt.scatter(x,y)
#画出
scipy2.1最小二乘法拟合(示例2:拟合非线性函数)
于 2020-05-17 23:02:01 首次发布
这篇博客介绍了如何使用Python的scipy2.1库进行非线性函数的最小二乘法拟合,通过示例详细阐述了拟合过程,适合对数据分析和科学计算感兴趣的读者。
摘要由CSDN通过智能技术生成