scipy2.1最小二乘法拟合(示例2:拟合非线性函数)

这篇博客介绍了如何使用Python的scipy2.1库进行非线性函数的最小二乘法拟合,通过示例详细阐述了拟合过程,适合对数据分析和科学计算感兴趣的读者。
摘要由CSDN通过智能技术生成
'''
scipy--optimize优化2.0:least_squares最小二乘法拟合
这次拟合一个非线性函数
2020.5.9
'''
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import least_squares, leastsq

x = np.linspace(-1,1,10)  #生成间隔相同的10个数据
y = 3*x**2+x + np.random.rand(10)  #产生y的数据,并加上一些噪声

#拟合 a*x**2+b*x+c
def residuals(p,x,y):  #计算误差函数
    a,b,c,d = p
    wucha = y-(a*x**2+b*x+c*np.sin(x)+d)
    return wucha     #做二乘法时需要变成最小值的误差:原函数值-预测函数值
    
c = least_squares(residuals,[1,1,0,1],args=(x,y))   #func是准备求最小值的函数,[a,b,c]把参数初始化为1,0,0
print(c)
print('参数为:', c.get('x'))

Q = sum((residuals(c.get('x'),x,y))**2)
print('误差平方和:',Q)


#画出散点图
plt.scatter(x,y)
#画出
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nutron-ma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值