【信号与系统】笔记(3-2)信号的频谱与傅里叶变换(一图看懂傅里叶变换)

这篇博客通过一图详细解释了傅里叶变换,阐述了周期信号频谱的概念和特点,包括离散谱线、谐波性、收敛性,并分析了谱线结构与波形参数的关系。还介绍了非周期信号的频谱,包括频谱密度函数和傅里叶变换。傅里叶变换是将信号从时域转换到频域的关键工具,有助于理解和分析各种信号。
摘要由CSDN通过智能技术生成

Author:AXYZdong
自动化专业 工科男
有一点思考,有一点想法,有一点理性!

一图看懂傅里叶变换

图片来自@胖福的小木屋
从时域来看,我们会看到一个近似为矩形的波,而我们知道这个矩形的波可以被差分为一些正弦波的叠加。
而从频域方向来看,我们就看到了每一个正余弦波的幅值,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为 0 的正弦波!
也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准 90 度角的矩形波呢?不幸的告诉大家,答案是无穷多个。

前言

连续系统频域分析中的 信号的频谱与傅里叶变换

信号的频谱:信号的某种特征量与信号频率变化的关系。

频谱图:将幅度和相位分量用一定高度的直线表示。

一、周期信号的频谱

1、周期信号频谱的相关概念

周期信号频谱:周期信号中各次谐波幅值、相位随频率变化关系。

A u ∼ ω A_u\sim \omega Auω :振幅频谱图

φ u ∼ ω \varphi _u\sim \omega φuω :相位频谱图

三角函数形式分解: f ( t ) = A 0 2 + ∑ n = 1 ∞ A n cos ⁡ ( n Ω t + φ n ) f(t)=\frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n \Omega t + \varphi_n) f(t)=2A0+n=1Ancos(nΩt+φn)

虚指数函数形式分解: f ( t ) = ∑ n = − ∞ ∞ F n e j n Ω t f(t)= \sum_{n=-\infty}^{\infty} F_n e^{jn \Omega t} f(t)=n=FnejnΩt

频谱分类直流分量幅度相位 n n n
单边谱 A 0 2 \frac{A_0}{2} 2A0 A n A_n An φ n \varphi_n φn n = 0 , 1 , 2 , . . . n=0,1,2,... n=0,1,2,...
双边谱 F 0 F_0 F0| F n F_n Fn| φ n \varphi_n φn n = 0 , ± 1 , ± 2 , . . . n=0, \pm1, \pm2,... n=0,±1,±2,...

单边谱和双边谱的关系:
cos ⁡ ( n Ω t ) = 1 2 ( e j n Ω t + e − j n Ω t ) F n = ∣ F n ∣ e j φ n = 1 2 A n e j φ n ∣ F n ∣ = 1 2 A n , φ n = − arctan ⁡ b n a n \cos( n \Omega t) = \frac{1}{2} (e^{jn \Omega t}+e^{-jn \Omega t})\\ F_n=|F_n| e^{j \varphi_n} = \frac{1}{2} A_n e^{j \varphi_n}\\ |F_n|= \frac{1}{2} A_n, \varphi_n=- \arctan\frac{b_n}a_n{} cos(nΩt)=21(ejnΩt+ejnΩt)Fn=Fnejφn=21AnejφnFn=21An,φn=arctanabnn

例:周期信号 f ( t ) = 1 − 1 2 cos ⁡ ( π 4 t − 2 π 3 ) + 1 4 sin ⁡ ( π 3 t − π 6 ) f(t) = 1- \frac{1}{2} \cos(\frac{\pi}{4}t-\frac{2\pi}{3}) + \frac{1}{4} \sin(\frac{\pi}{3}t-\frac{ \pi}{6}) f(t)=121cos(4πt32π)+41sin(3πt6π)

求该周期信号的基波周期 T T T ,基波角频率 Ω \Omega Ω ,平均功率 P P P ,并画出它的频谱图。

解:
改 写 f ( t ) 表 达 式 : f ( t ) = 1 + 1 2 cos ⁡ ( π 4 t + π 3 ) + 1 4 cos ⁡ ( π 3 t − 2 π 3 ) 改写f(t)表达式:f(t)=1 + \frac{1}{2} \cos(\frac{\pi}{4}t + \frac{\pi}{3}) + \frac{1}{4} \cos(\frac{\pi}{3}t-\frac{ 2\pi}{3}) f(t)f(t)=1+21cos(4πt+3π)+41cos(3πt32π)
1 2 cos ⁡ ( π 4 t + π 3 ) 周 期 T 1 = 8 \frac{1}{2} \cos(\frac{\pi}{4}t + \frac{\pi}{3}) 周期 T_1=8 21cos(4πt+3π)T1=8

1 4 cos ⁡ ( π 3 t − 2 π 3 ) 周 期 T 2 = 6 \frac{1}{4} \cos(\frac{\pi}{3}t-\frac{ 2\pi}{3})周期 T_2=6 41cos(3πt32π)T2=6

∴ f ( t ) 周 期 T = 24 , 基 波 角 频 率 Ω = 2 π T = π 12 \therefore f(t) 周期T=24, 基波角频率 \Omega = \frac{ 2\pi}{T} =\frac{ \pi}{12} f(t)T=24,Ω=T2π=12π

由 帕 斯 瓦 尔 等 式 , P = 1 + 1 2 ⋅ ( 1 2 ) 2 + 1 2 ⋅ ( 1 4 ) 2 = 37 32 由帕斯瓦尔等式,P=1+\frac{ 1}{2} \cdot(\frac{ 1}{2})^2 +\frac{ 1}{2} \cdot(\frac{ 1}{4})^2 =\frac{ 37}{32} P=1+21(21)2+21(41)2=3237

频谱图:

1 2 cos ⁡ ( π 4 t + π 3 ) \frac{1}{2} \cos(\frac{\pi}{4}t + \frac{\pi}{3}) 21cos(4πt+3π) f ( t ) f(t) f(t) [ π / 4 ] / [ π / 12 ] = 3 [\pi/4]/[\pi/12]=3 [π/4]/[π/12]=3 次谐波分量;

1 4 cos ⁡ ( π 3 t − 2 π 3 ) \frac{1}{4} \cos(\frac{\pi}{3}t-\frac{ 2\pi}{3}) 41cos(3πt32π) f ( t ) f(t) f(t) [ π / 3 ] / [ π / 12 ] = 4 [\pi/3]/[\pi/12]=4 [π/3]/[π/12]=4 次谐波分量;

在这里插入图片描述

2、周期信号频谱的特点

1、离散型:以基频 Ω \Omega Ω 为间隔的若干离散谱线组成

2、谐波性:谱线仅含有基频 Ω \Omega Ω 的整数倍分量

3、收敛性:整体趋势减小

周期信号频谱的特点简要的概括了一下

3、谱线的结构与波形参数的关系

1、 T T T一定, τ \tau τ变小,此时 Ω \Omega Ω (谱线间隔)不变。两零点之间的谱线数:

ω Ω = 2 π τ / 2 π T , 增 多 \frac{\omega}{\Omega} = \frac{2 \pi}{\tau} /\frac{2\pi}{T},增多 Ωω=τ2π/T2π,
2、 τ \tau τ 一定, T T T 增大,间隔 Ω \Omega Ω 减小,频谱变密,幅度减小。

如果周期 T T T 无限增长( T → ∞ T\to \infty T ),周期信号就变成了非周期信号,那么,谱线间隔将趋于零,周期信号的离散频谱就过渡到非周期信号的连续频谱。各频率分量的幅度也趋近于无穷小。

二、非周期信号的频谱

1、周期信号 → \to 非周期信号

频谱函数: F n = 1 T ∫ − 2 T 2 T f ( t ) e − j n Ω t d t F_n= \frac{1}{T} \int_{-\frac{2}{T}}^{ \frac{2}{T}} f(t) e^{-j n \Omega t}dt Fn=T1T2T2f(t)ejnΩtdt

T → ∞ T\to \infty T 时:
f ( t ) 周 期 信 号 → 非 周 期 信 号 F n → 0 谱 线 间 隔 Ω → 0 离 散 频 谱 → 连 续 频 谱 , 频 谱 幅 度 → 0 f(t) 周期信号\to 非周期信号\\ F_n \to0\\ 谱线间隔 \Omega \to 0\\ 离散频谱\to 连续频谱 ,频谱幅度\to 0 f(t)Fn0线Ω00

2、频谱密度函数

频谱函数: F n = 1 T ∫ − 2 T 2 T f ( t ) e − j n Ω t d t F_n= \frac{1}{T} \int_{-\frac{2}{T}}^{ \frac{2}{T}} f(t) e^{-j n \Omega t}dt Fn=T1T2T2f(t)ejnΩtdt
T → ∞ T\to \infty T 时:
Ω → d ω ( 无 穷 小 量 ) n Ω → ω ( 离 散 → 连 续 ) \Omega \to d\omega (无穷小量)\\ n\Omega \to \omega (离散\to连续)\\ Ωdω()nΩω()

F ( j ω ) = lim ⁡ T → ∞ F n 1 / T = lim ⁡ T → ∞ F n T F(j \omega)=\lim_{T\to \infty} \frac{F_n}{1/T}=\lim_{T\to \infty}F_nT F(jω)=Tlim1/TFn=TlimFnT
                                                                                        = lim ⁡ T → ∞ ∫ − 2 T 2 T f ( t ) e − j n Ω t d t =\lim_{T\to \infty} \int_{-\frac{2}{T}}^{\frac{2}{T}} f(t) e^{-j n \Omega t}dt =limTT2T2f(t)ejnΩtdt

                                                                                        = ∫ − ∞ ∞ f ( t ) e − j ω t d t =\int_{-\infty}^{\infty} f(t) e^{-j \omega t}dt =f(t)ejωtdt

3、傅里叶变换与反变换

3.1傅里叶变换

F ( j ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t F(j \omega)= \int_{-\infty}^{\infty} f(t) e^{-j \omega t}dt F(jω)=f(t)ejωtdt

F ( j ω ) F(j \omega) F(jω) 称为 f ( t ) f(t) f(t) 的傅里叶变换

F ( j ω ) F(j \omega) F(jω) 一般为复数,写成 F ( j ω ) F(j \omega) F(jω) = ∣ F ( j ω ) ∣ e j φ ( ω ) |F(j \omega)| e^{j \varphi(\omega)} F(jω)ejφ(ω)

F ( j ω ) ∼ ω F(j \omega)\sim \omega F(jω)ω :幅频度谱图,频率 ω \omega ω 的偶函数

φ u ∼ ω \varphi _u\sim \omega φuω :相位频谱图,频率 ω \omega ω 的奇函数

3.2傅里叶反变换

f ( t ) = 1 2 π ∫ − ∞ ∞ F ( j ω ) e j ω t d ω f(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{j \omega t}d\omega f(t)=2π1F(jω)ejωtdω

符号差别:

在这里插入图片描述

4、常用函数的傅里叶变换

e − α t ϵ ( t ) ⟷ 1 α + j ω e^{- \alpha t}\epsilon(t) \longleftrightarrow \frac{1}{\alpha+j \omega} eαtϵ(t)α+jω1
e − α ∣ t ∣ ⟷ 2 α α 2 + ω 2 e^{- \alpha |t|} \longleftrightarrow \frac{2\alpha}{\alpha ^2+ \omega ^2} eαtα2+ω22α
g τ ( t ) ⟷ τ S a ( ω τ 2 ) g_\tau(t) \longleftrightarrow \tau Sa(\frac{\omega \tau}{2}) gτ(t)τSa(2ωτ)
δ ( t ) ⟷ 1 \delta(t) \longleftrightarrow 1 δ(t)1
δ ′ ( t ) ⟷ j ω \delta'(t) \longleftrightarrow j \omega δ(t)jω
1 ⟷ 2 π δ ( ω ) 1 \longleftrightarrow2\pi \delta(\omega) 12πδ(ω)
s g n ( t ) ⟷ 2 j ω sgn(t) \longleftrightarrow \frac{2}{ j \omega} sgn(t)jω2
ϵ ( t ) ⟷ π δ ( ω ) + 1 j ω \epsilon(t) \longleftrightarrow \pi \delta(\omega) + \frac{1}{ j \omega} ϵ(t)πδ(ω)+jω1

总结

在这里插入图片描述
时域里面原函数 ⟶ \longrightarrow 频域里面相函数
频域里面相函数 ⟶ \longrightarrow 时域里面原函数

周期信号 → \to 傅里叶级数 → \to 频谱

非周期信号 → \to 傅里叶变换 → \to 频谱


「你可能还想看」系列文章:
【信号与系统】笔记合集,你确定不收藏吗?我已经收藏了



如果觉着帮到你的话,点个赞支持一下呢!!!^ _ ^
码字不易,大家的支持就是我坚持下去的动力。点赞后不要忘了关注我哦!

说明:部分图片来源于网络,如有侵权请联系我删除。

  • 116
    点赞
  • 216
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论
### 回答1: 《斯坦福大学傅里叶变换及应用笔记.pdf》是一本关于傅立叶变换的学术资料。傅里叶变换是一种数学工具,用于将函数在一个时间或频率域内表示为另一个域中的函数。它可以将一个复杂的信号分解成一系列简单的波的叠加,从而方便我们进行信号处理和分析。 傅立叶变换的应用十分广泛。在信号处理领域,傅立叶变换被用于频域滤波、频谱分析以及频域图像处理等方面。在通信领域,傅立叶变换可以用于信号的传输与接收,例如OFDM调制技术。在图像处理方面,傅立叶变换可以用于图像的压缩、滤波等操作。此外,傅立叶变换也被广泛应用于物理学、工程学、经济学等多个领域的研究和实践中。 《斯坦福大学傅里叶变换及应用笔记.pdf》可能包含了傅立叶变换的基本原理和性质,如时域和频域的关系、傅立叶级数展开、傅立叶变换的性质等。此外,它可能还介绍了傅立叶变换的应用案例和实际问题的求解方法。 对于学习者而言,《斯坦福大学傅里叶变换及应用笔记.pdf》可以作为学习傅立叶变换的参考资料。通过研究其中的理论知识和实例,学习者可以深入了解傅立叶变换的原理和应用,并且能够应用傅立叶变换解决相关问题。对于研究者和工程师而言,这本笔记可以帮助他们理解和应用傅立叶变换,从而提高信号处理和通信等领域的工作效率和质量。 综上所述,《斯坦福大学傅里叶变换及应用笔记.pdf》是一本介绍傅立叶变换及其应用的学术资料,对于理解和应用傅立叶变换具有重要意义。 ### 回答2: 《斯坦福大学傅里叶变换及应用笔记.pdf》是一份关于傅里叶变换及其应用的学习笔记傅里叶变换是一种数学工具,用于将一个函数表示为一系列正弦和余弦函数的和。它在信号处理、图像处理、通信等领域具有广泛的应用。 笔记首先介绍了傅里叶级数,即将周期函数分解成一系列离散的正弦和余弦函数。然后,笔记介绍了傅里叶变换的连续版本,用于将非周期函数表示为一系列连续的正弦和余弦函数的积分。傅里叶变换具有线性性质和频域能量守恒的特点。 在笔记的后续部分,作者详细介绍了傅里叶变换的性质和定理,包括频谱的平移、对称性、卷积定理等。这些定理不仅对于理解傅里叶变换的本质和特性很重要,也为实际应用提供了便利。 此外,笔记还涵盖了傅里叶变换的离散版本,即离散傅里叶变换(DFT)和快速傅里叶变换(FFT)。DFT用于将离散信号表示为离散正弦和余弦函数的和,而FFT则是一种高效计算DFT的算法。 最后,笔记还介绍了傅里叶变换信号处理和图像处理中的一些应用,如滤波、频谱分析和图像压缩。这些应用广泛应用于音频处理、图像处理和通信系统中,对于理解和应用傅里叶变换具有重要意义。 总的来说,《斯坦福大学傅里叶变换及应用笔记.pdf》是一份非常有价值的学习资料,涵盖了傅里叶变换的基本理论和应用,并通过清晰的讲解和例子帮助读者更好地理解和应用傅里叶变换。 ### 回答3: 《斯坦福大学傅里叶变换及应用笔记.pdf》是一本关于傅里叶变换及其应用的学术笔记傅里叶变换是一种重要的数学工具,可以将一个函数在时间(或空间)域中的表示转换为频率域中的表示。这个变换常常被用于信号处理、图像处理、通信系统和物理学等领域。 这本笔记首先介绍了傅里叶级数,它是傅里叶变换的基础。傅里叶级数可以将周期函数表示为一系列正弦和余弦函数的和,通过调整不同频率分量的幅度和相位,可以精确地重建原始函数。 接着,笔记详细介绍了傅里叶变换,这是连续时间信号频谱表示。它通过将原始信号分解成不同频率的正弦和余弦函数的和,揭示了信号在不同频率上的能量分布。傅里叶变换在音频信号处理、图像处理和信号压缩等方面有广泛的应用。 此外,笔记还介绍了快速傅里叶变换(FFT),这是一种高效计算傅里叶变换的算法。FFT在数字信号处理中被广泛使用,可以大大提高计算速度,特别是对于大规模信号处理问题。 此外,笔记还探讨了一些傅里叶变换的应用,例如滤波、谱分析和频率调制。通过对信号的分析和处理,可以提取出信号中具有特定频率的成分,对于提高信号质量和去除噪声非常有用。 总的来说,《斯坦福大学傅里叶变换及应用笔记.pdf》是一本全面而深入的关于傅里叶变换及其应用的资料,对于学习和理解傅里叶变换以及应用背后的原理和技术都有很大帮助。无论是在学术研究还是工程实践中,都是一本非常有价值的参考书。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AXYZdong

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值