【学习笔记】奥本海姆第二版《信号与系统》第五章:离散时间傅里叶变换

系列文章目录

【学习笔记】奥本海姆第二版《信号与系统》第一章:信号与系统
【学习笔记】奥本海姆第二版《信号与系统》第二章:线性时不变系统
【学习笔记】奥本海姆第二版《信号与系统》第三章:周期信号的傅里叶级数表示
【学习笔记】奥本海姆第二版《信号与系统》第四章:连续时间傅里叶变换



一、非周期信号的表示:离散时间傅里叶变换

1.1 离散时间傅里叶变换的导出

   和连续时间非周期信号一样,考虑某一序列 x [ n ] x[n] x[n],它具有有限持续期;也就是说对于某个整数 N 1 N_1 N1 N 2 N_2 N2,在 − N 1 ≤ n ≤ N 2 -N_1≤n≤N_2 N1nN2范围以外, x [ n ] = 0 x[n]=0 x[n]=0。如下图所示:

在这里插入图片描述

  由这个非周期信号可以构成一个周期序列 x ˜ [ n ] \~{x}[n] x˜[n],使得对 x ˜ [ n ] \~{x}[n] x˜[n]来说 x [ n ] x[n] x[n]是它的一个周期,如下图所示:

在这里插入图片描述
  随着所选周期 N N N的增大; x ˜ [ n ] \~{x}[n] x˜[n]就在一个更长的时间间隔内与 x [ n ] x[n] x[n]一样,而当 N → ∞ N→∞ N时,对任意有限 n n n值来说有
x ˜ [ n ] = x [ n ] \~{x}[n]=x[n] x˜[n]=x[n]。根据第三章的离散傅里叶级数公式:
x ˜ [ n ] = ∑ k = < N > a k e j k ω 0 n = ∑ k = < N > a k e j k ( 2 π N ) n \~{x}[n]=\sum_{k=<N>}a_ke^{jkω_0n}=\sum_{k=<N>}a_ke^{jk(\frac{2π}{N})n} x˜[n]=k=<N>akejkω0n=k=<N>akejk(N2π)n
a k = 1 N ∑ n = < N > x ˜ [ n ] e − j k ω 0 n = 1 N ∑ n = < N > x ˜ [ n ] e − j k ( 2 π N ) n a_k=\frac{1}{N}\sum_{n=<N>}\~{x}[n]e^{-jkω_0n}=\frac{1}{N}\sum_{n=<N>}\~{x}[n]e^{-jk(\frac{2π}{N})n} ak=N1n=<N>x˜[n]ejkω0n=N1n=<N>x˜[n]ejk(N2π)n

  因为在包括 − N 1 ≤ n ≤ N 2 -N_1≤n≤N_2 N1nN2区间的一个周期上 x ˜ [ n ] = x [ n ] \~{x}[n]=x[n] x˜[n]=x[n],因此在上式中,求和区间就选在这个周期上可用 x [ n ] x[n] x[n]来代替 x ˜ [ n ] \~{x}[n] x˜[n],而得到:
a k = 1 N ∑ n = − N 1 N 2 x [ n ] e − j k ( 2 π N ) n = 1 N ∑ n = − ∞ + ∞ x [ n ] e − j k ( 2 π N ) n a_k=\frac{1}{N}\sum_{n=-N_1}^{N_2}x[n]e^{-jk(\frac{2π}N)n}=\frac{1}{N}\sum_{n=-∞}^{+∞}x[n]e^{-jk(\frac{2π}{N})n} ak=N1n=N1N2x[n]ejk(N2π)n=N1n=+x[n]ejk(N2π)n
  上式中已经考虑到在 − N 1 ≤ n ≤ N 2 -N_1≤n≤N_2 N1nN2,区间以外, x [ n ] = 0 x[n]=0 x[n]=0这一点。现在定义函数:
X ( e j ω ) = ∑ n = − ∞ + ∞ x [ n ] e − j ω n X(e^{jω})=\sum_{n=-∞}^{+∞}x[n]e^{-jωn} X(e)=n=+x[n]ejωn
  可见系数 a k a_k ak是正比于 X ( e j ω ) X(e^{jω}) X(e)的样本值,其中 ω 0 = 2 π N ω_0=\frac{2π}{N} ω0=N2π表示频域中的样本间隔,即:
a k = 1 N X ( e j k ω 0 ) a_k=\frac{1}{N}X(e^{jkω_0}) ak=N1X(ejkω0)
  随着 N N N增加, ω 0 ω_0 ω0减小,求和就过渡成了积分,又因为 X ( j ω ) X(jω) X()是周期的 2 π 2π 2π的周期函数,因此就得:

x [ n ] = 1 2 π ∫ 2 π X ( e j ω ) e j ω n d ω x[n]=\frac{1}{2π}∫_{2π}X(e^{jω})e^{jωn}dω x[n]=2π12πX(e)ejωndω
X ( e j ω ) = ∑ n = − ∞ + ∞ x [ n ] e − j ω n X(e^{jω})=\sum_{n=-∞}^{+∞}x[n]e^{-jωn} X(e)=n=+x[n]ejωn

   X ( e j ω ) X(e^{jω}) X(e)称为离散时间傅里叶变换,这一对式子就是离散时间傅里叶变换对。与连续时间情况一样,傅里叶变换 X ( e j ω ) X(e^{jω}) X(e)往往称为 x [ n ] x[n] x[n]的频谱。

1.2 几个常见的典型信号的离散傅里叶变换对

  1. 信号 x [ n ] = a n u [ n ] , ∣ a ∣ < 1 x[n] =a^nu[n],|a|<1 x[n]=anu[n]a<1,其傅里叶变换为: X ( e j ω ) = 1 1 − a e − j ω X(e^{jω})=\frac{1}{1-ae^{-jω}} X(e)=1ae1
  2. 信号 x [ n ] = a ∣ n ∣ , ∣ a ∣ < 1 x[n]=a^{|n|},|a|<1 x[n]=an,a<1,其傅里叶变换为: X ( e j ω ) = 1 − a 2 1 − 2 a c o s ω + a 2 X(e^{jω})=\frac{1-a^2}{1-2acosω+a^2} X(e)=12acosω+a21a2
  3. 信号 x [ n ] = {   0 , ∣ n ∣ > N 1 1 , ∣ n ∣ ≤ N 1 x[n]=\{\ _{0,|n|>N_1} ^{1,|n|≤N_1} x[n]={ 0nN11nN1,其傅里叶变换为: X ( e j ω ) = s i n ( N 1 + 1 2 ) ω s i n ω 2 X(e^{jω})=\frac{sin(N_1+\frac{1}{2})ω}{sin\frac{ω}{2}} X(e)=sin2ωsin(N1+21)ω
  4. 信号 x [ n ] = δ [ n ] x[n]=δ[n] x[n]=δ[n],其傅里叶变换为: X ( e j ω ) = 1 X(e^{jω})=1 X(e)=1
  5. 信号 x [ n ] = 1 x[n]=1 x[n]=1,其傅里叶变换为: X ( e j ω ) = 2 π ∑ n = − ∞ + ∞ δ ( ω − 2 k π ) X(e^{jω})=2π\sum_{n=-∞}^{+∞}δ(ω-2kπ) X(e)=2πn=+δ(ω2)
  6. 信号 x [ n ] = s i n ω n π n x[n]=\frac{sinωn}{πn} x[n]=πnsinωn,其傅里叶变换为:

在这里插入图片描述

  1. 信号 x [ n ] = u [ n ] 信号x[n]=u[n] 信号x[n]=u[n],其傅里叶变换为:
    X ( e j ω ) = 1 1 − e − j ω + π ∑ k = − ∞ + ∞ δ ( ω − 2 k π ) X(e^{jω})=\frac{1}{1-e^{-jω}}+π\sum_{k=-∞}^{+∞}δ(ω-2kπ) X(e)=1e1+πk=+δ(ω2)

1.3 关于离散时间傅里叶变换的收敛问题

  以上讨论都是假设 x [ n ] x[n] x[n]是任意的且有限长情况下得到的结论,但是离散傅里叶变换对极为广泛的一类无限长序列也是成立的。在信号为无限长的情况下,还必须考虑分析公式中无穷项求和的收敛问题。保证这个和式收敛而对 x [ n ] x[n] x[n]所加的条件是与连续时间傅里叶变换的收敛条件直接相对应的。如果 x [ n ] x[n] x[n]是绝对可和的,即:
∑ n = − ∞ + ∞ ∣ x [ n ] ∣ < ∞ \sum_{n=-∞}^{+∞}|x[n]|<∞ n=+x[n]<

二、离散傅里叶变换性质

2.1 周期性质

  离散傅里叶变换对 ω ω ω来说总是周期的,其周期为 2 π 2π 2π,即:
X ( e j ( ω + 2 π ) ) = X ( e j ω ) X(e^{j(ω+2π)})=X(e^{jω}) X(ej(ω+2π))=X(e)

2.2 线性性质

  若:
x 1 [ n ] ⟷ Γ X 1 ( e j ω ) x_1[n]\stackrel{\Gamma}{\longleftrightarrow}X_1(e^{jω}) x1[n]ΓX1(e)
  且:
x 2 [ n ] ⟷ Γ X 2 ( e j ω ) x_2[n]\stackrel{\Gamma}{\longleftrightarrow}X_2(e^{jω}) x2[n]ΓX2(e)
  则:
a x 1 [ n ] + b x 2 [ n ] ⟷ Γ a X 1 ( e j ω ) + b X 2 ( e j ω ) ax_1[n]+bx_2[n]\stackrel{\Gamma}{\longleftrightarrow}aX_1(e^{jω})+bX_2(e^{jω}) ax1[n]+bx2[n]ΓaX1(e)+bX2(e)

2.3 时移性质

  若:
x [ n ] ⟷ Γ X ( e j ω ) x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω}) x[n]ΓX(e)

  则:
x [ n − n 0 ] ⟷ Γ e − j ω n 0 X ( e j ω ) x[n-n_0]\stackrel{\Gamma}{\longleftrightarrow}e^{-jωn_0}X(e^{jω}) x[nn0]Γen0X(e)

2.4 频移性质

  若:
x [ n ] ⟷ Γ X ( e j ω ) x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω}) x[n]ΓX(e)

  则:
e j ω 0 n x [ n ] ⟷ Γ X ( e j ( ω − ω 0 ) ) e^{jω_0n}x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{j(ω-ω_0)}) ejω0nx[n]ΓX(ej(ωω0))

2.5 共轭对称性

  若:
x [ n ] ⟷ Γ X ( e j ω ) x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω}) x[n]ΓX(e)

  则:
x ∗ [ n ] ⟷ Γ X ∗ ( e j ω ) x^*[n]\stackrel{\Gamma}{\longleftrightarrow}X^*(e^{jω}) x[n]ΓX(e)

  实函数傅里叶变换实部为偶函数,虚部为奇函数;实函数幅频特性为偶函数,相频特性为奇函数。

2.6 差分性质

  若:
x [ n ] ⟷ Γ X ( e j ω ) x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω}) x[n]ΓX(e)

  则:
x [ n ] − x [ n − 1 ] ⟷ Γ ( 1 − e − j ω ) X ( e j ω ) x[n]-x[n-1]\stackrel{\Gamma}{\longleftrightarrow}(1-e^{-jω})X(e^{jω}) x[n]x[n1]Γ(1e)X(e)

2.7 频域微分

  若:
x [ n ] ⟷ Γ X ( e j ω ) x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω}) x[n]ΓX(e)

  则:
n x [ n ] ⟷ Γ j d X ( e j ω ) d ω nx[n]\stackrel{\Gamma}{\longleftrightarrow}j\frac{dX(e^{jω})}{dω} nx[n]ΓjdωdX(e)

2.8 时间反转

  若:
x [ n ] ⟷ Γ X ( e j ω ) x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω}) x[n]ΓX(e)

  则:
x [ − n ] ⟷ Γ X ( e − j ω ) x[-n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{-jω}) x[n]ΓX(e)

2.9 时域扩展

  定义 x ( k ) [ n ] x_{(k)}[n] x(k)[n] x [ n ] x[n] x[n]中每一个数插入k-1个0构成的序列,若:
x [ n ] ⟷ Γ X ( e j ω ) x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω}) x[n]ΓX(e)

  则:
x ( k ) [ n ] ⟷ Γ X ( e j ω k ) x_{(k)}[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jωk}) x(k)[n]ΓX(ejωk)

2.10 时域卷积

  若:
x [ n ] ⟷ Γ X ( e j ω ) x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω}) x[n]ΓX(e)
h [ n ] ⟷ Γ H ( e j ω ) h[n]\stackrel{\Gamma}{\longleftrightarrow}H(e^{jω}) h[n]ΓH(e)
  则:
x [ n ] ∗ h [ n ] ⟷ Γ X ( e j ω ) H ( e j ω ) x[n]*h[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω})H(e^{jω}) x[n]h[n]ΓX(e)H(e)
  时域卷积等于频域相乘。

2.11 调制性质

  若:
x [ n ] ⟷ Γ X ( e j ω ) x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω}) x[n]ΓX(e)
y [ n ] ⟷ Γ Y ( e j ω ) y[n]\stackrel{\Gamma}{\longleftrightarrow}Y(e^{jω}) y[n]ΓY(e)
  则:
x [ n ] y [ n ] ⟷ Γ 1 2 π ∫ 2 π X ( e j θ ) Y ( e j ( ω − θ ) ) d θ x[n]y[n]\stackrel{\Gamma}{\longleftrightarrow}\frac{1}{2π}∫_{2π}X(e^{jθ})Y(e^{j(ω-θ)})dθ x[n]y[n]Γ2π12πX(ejθ)Y(ej(ωθ))dθ

2.11 帕斯瓦尔定理

  若:
x [ n ] ⟷ Γ X ( e j ω ) x[n]\stackrel{\Gamma}{\longleftrightarrow}X(e^{jω}) x[n]ΓX(e)
  则:
∑ k = − ∞ + ∞ ∣ x [ n ] ∣ 2 = 1 2 π ∫ 2 π ∣ X ( e j ω ) ∣ 2 d ω \sum_{k=-∞}^{+∞}|x[n]|^2=\frac{1}{2π}∫_{2π}|X(e^{jω})|^2dω k=+x[n]2=2π12πX(e)2dω
  时域信号能量 2 π 2π 2π倍等于频域信号能量。

三、傅里叶变换性质和基本傅里叶变换对列表

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、小结

  这一章和第4章并行地研究了离散时间信号的傅里叶变换,并考察了它的许多重要性质。贯穿整章,我们已经看到连续时间和离散时间傅里叶分析之间有很多类似之处,同时也看到了某些重要的差别。例如,在离散时间情况下,傅里叶级数和傅里叶变换之间的关系非常类似于在连续时间情况下两者之间的关系。尤其是,由离散时间傅里叶级数表示导出非周期信号的离散时间傅里叶变换的过程与在连续时间情况下所对应的过程几乎完全一样。再者,连续时间傅里叶变换的很多性质都能在离散时间情况下找到相对应的性质。但另一方面,连续时间情况相比,一个非周期信号的离散时间傅里叶变换总是周期的,且周期为2π。


  • 7
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
连续信号系统的复频域分析是指在连续时间范围内对信号系统的频域特性进行分析。复频域分析是指在复平面上对信号系统的频率响应进行分析,而不是简单地使用实数域上的频率。这种分析方法可以更全面地描述信号系统在频域上的特性,包括幅度和相位。 在连续信号系统的复频域分析中,我们可以使用拉普拉斯变换来将信号系统从时域转换到复频域。通过对信号系统的拉普拉斯变换进行复频域分析,我们可以得到它们的频率响应函数,这可以帮助我们更清晰地了解信号系统的频率特性,包括频率响应的幅度和相位信息。 使用复频域分析方法,我们可以对信号系统进行频域特性的定量分析,例如计算它们的频率响应的幅频特性、相频特性以及相位延迟等。这些信息对于系统的设计、分析和控制是非常重要的。 除了拉普拉斯变换傅里变换在连续信号系统的复频域分析中也是非常重要的工具。通过傅里变换,我们可以将信号从时域转换到频域,并且可以得到信号的频谱信息,包括频谱的幅度和相位。在复频域上进行傅里变换分析,可以帮助我们更好地理解信号在频域上的特性,为信号处理和系统分析提供更丰富的信息。 总之,连续信号系统的复频域分析通过在复平面上对信号系统的频率响应进行分析,为我们提供了更全面、更深入的频域特性信息,这对于系统的设计、分析和控制都是非常重要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱奔跑的虎子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值