【跟随精读】OpenAI API文档阅读随笔 关联ChatGPT,GPT3.5, InstructGPT, GPT3.5 Fine-tune, prompt技巧(上)

ChatGPT开放了API调用,让我们来一起看一下他们家的API服务框架文档。

声明:
在接下来的文档中,我会将OpenAI简称为OA,prompt称为模板,Fine-tune称为微调。

Get Started:

模板和参数

1,提到当单纯表达诉求输出效果不好的时候,考虑通过多加一些例子来引导,完善模型的输出。
2. 解释参数 temperature:

取值范围 0-1之间的小数
值越大,生成结果的随机性更强,往往序列更强,分布更边缘。
反之,更稳定,乏味,重复性强(官方表达是repetitive)
当t=0,同样的输入不变,输出也不会再变,相当于determinanistic

API试用

接下来OA给出了以上述给小动物起名字的样例为实现背景的一段脚本,下载下来用requirement文件可以直接pip install全部依赖。
这里要注意因为系统不同,文档中写的运行app的命令行是linux下的写法。
如果你用的是Windows,应该这么写:

python -m venv venv
venv\Scripts\activate.bat  # 这里这一行与原文Linux版不一致
flask run

然后就可以到 http://localhost:5000 去体验功能并调用API了。

扩展/后续/其他

下面的tutorial标签下还有一个QA API调用的小实践样例,再次不做展开了,快速入门这章节就到这了。
主要工作目标还是进行微调API调用,所以下一篇文章中我们详细看看微调API的数据要求的调用方法。

<think>好的,我现在需要帮助用户找到关于GPT-4o Mini API的使用说明、文档和示例。首先,我需要回忆一下用户提供的引用内容,看看里面有没有相关的信息。 用户提供了四个引用,其中引用[1]提到了使用API密钥进行认证并调用GPT-4o Mini生成文本的Python示例代码。引用[2]讨论了微调API的使用,并给出了伪代码示例。引用[3]和[4]则更多是关于模型性能和应用场景的描述。 用户的问题是要寻找API的使用说明、文档和示例,所以我需要从这些引用中提取相关信息,并按照用户的要求结构化地回答。根据系统级指令,需要生成相关问题,并且回答中引用的段落末尾添加引用标识。 首先,我应该整理出使用GPT-4o Mini API的基本步骤,包括认证、生成文本、微调等。然后,确保每个步骤都有对应的代码示例,并且正确引用来源。例如,引用[1]中的代码示例可以用来展示基础调用方法,引用[2]的伪代码说明微调过程。 接下来需要检查是否需要补充其他信息,比如参数说明或最佳实践。用户提供的引用中没有详细的参数说明,但根据一般API文档的常见内容,可能需要提到max_tokens、temperature等参数的作用,但这里要确保不引入引用中没有的信息,避免不准确。 然后,生成相关问题部分,需要围绕用户的需求,提出可能的相关问题,比如认证方式、生成文本的参数调整、微调方法以及应用场景等。这些问题应该基于用户提供的引用内容,确保答案可以在现有引用中找到依据。 最后,确保整个回答符合格式要求,数学表达式正确使用$...$,独立公式用$$...$$,但在这个问题中可能数学公式较少,主要关注代码块和引用标识的正确使用。回答结构要清晰,分步骤说明,并且引用正确。 现在需要组织语言,用中文分步骤说明,每个部分加上适当的标题,代码块用反引号包裹,并在适当的位置添加引用标识。例如,在提到生成文本时引用[1],微调时引用[2],应用场景时引用[3]和[4]。 可能还需要注意用户提到的“免费微调服务的使用技巧”来自引用[2],要确保这一点被正确引用。另外,引用[3]中的性能优势可以作为应用场景的例子。 总结来说,回答的结构应该是: 1. 基本使用步骤(认证、调用) 2. 微调方法 3. 应用场景 4. 示例代码 5. 相关问题 每个部分对应引用中的内容,并正确标注引用标识。需要确保代码示例正确,参数如model名称是"gpt-4o-mini",和引用一致。同时,检查是否有遗漏的信息,比如是否需要提到API的版本或更新,但根据现有引用,可能不需要。</think>### GPT-4o Mini API 使用说明 GPT-4o Mini 是 OpenAI 推出的高效轻量级模型,适用于文本生成、数据提取等场景。以下是核心使用方法: --- #### 1. **基础调用方法** **步骤 1:安装库并设置 API 密钥** ```python import openai openai.api_key = &#39;your-api-key&#39; # 替换为你的 API 密钥 ``` **步骤 2:调用文本生成接口** ```python response = openai.Completion.create( model="gpt-4o-mini", prompt="请生成一段关于机器学习的简要介绍。", max_tokens=100 # 控制生成文本长度 ) print(response.choices[0].text.strip()) ``` 此示例展示了如何生成指定主题的文本[^1]。 --- #### 2. **微调模型以适应特定任务** 通过微调(Fine-tuning)可提升模型在特定领域的表现: ```python # 伪代码示例,实际需按 OpenAPI 文档准备数据 finetune_data = [ {"prompt": "从收据提取金额", "completion": "金额: $25.50"}, {"prompt": "生成邮件回复", "completion": "尊敬的客户,您的反馈已收到..."} ] response = openai.FineTune.create( training_file=finetune_data, model="gpt-4o-mini" ) print("微调任务 ID:", response.id) ``` 微调适用于结构化数据提取、定制化回复等场景[^2][^3]。 --- #### 3. **关键参数说明** - `max_tokens`: 控制输出长度 - `temperature`: 调整生成文本的随机性(0-1,值越大越随机) - `stop`: 设置终止序列(如 `stop=["\n"]` 在换行时停止) --- #### 4. **典型应用场景** 1. **结构化数据提取**:如从收据、合同等文档中提取关键字段。 2. **自动化邮件回复**:根据上下文生成高质量响应[^3]。 3. **领域知识问答**:通过微调适配医疗、法律等垂直领域[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值