线性代数物理意义学习(从几何角度出发,不同于数值解析解)

前言

大学课本里面学的线性代数从多元方程组的解析解入手,很多时候其本质讲解的是计算问题,但是当知识点进入到矩阵,向量时便不易理解,只注重其求解思路,不注重其应用价值。这里是从空间解析几何的角度出发辅助理解线性代数的本质。

一、向量是什么?

向量代表着空间中的箭头,如图所示
在这里插入图片描述
这里用矩阵表示就是
[ 2 4 ] \begin{bmatrix}{\color{Red} 2}\\{\color{Red} 4 }\end{bmatrix} [24]
矩阵中的向量起始点必须是原点
矩阵的单位数轴为
a v ⃗ + b w ⃗ a{\color{Red} \vec{v}}+b{\color{Red} \vec{w}} av +bw
v ⃗ \vec{v} v w ⃗ \vec{w} w 组成平面。代表张成的空间
a v ⃗ + b w ⃗ + c u ⃗ a{\color{Red} \vec{v}}+b{\color{Red} \vec{w}}+c{\color{Red} \vec{u}} av +bw +cu
v ⃗ \vec{v} v w ⃗ \vec{w} w , u ⃗ \vec{u} u 组成空间。若组成的是一个平面,说明线性相关
向量空间的一组张成该空间的一个线性无关向量集
矩阵变换就是考虑向量的输入输出,输入向量经矩阵转换后输入向量,改变了向量的方向和大小。
所以矩阵转换就是考虑运动,箭头终点是个点,看成点的运动。
在矩阵转换过程中,
直线依旧是直线
原点保持固定
对角线不弯折

二、线性变换的实质?

线性变换考虑的是基的变换(已知变换前后向量
在这里插入图片描述
i ⃗ → [ 1 − 2 ] , j ⃗ → [ 3 0 ] \vec{i}\rightarrow \begin{bmatrix}1\\ -2\end{bmatrix},\vec{j}\rightarrow \begin{bmatrix}3\\ 0\end{bmatrix} i [12],j [30]

这里 i ⃗ \vec{i} i 代表基

[ x y ] ⇒ x [ 1 − 2 ] + y [ 3 0 ] = [ 1 x + 3 y − 2 x ] \begin{bmatrix}x\\ y\end{bmatrix}\Rightarrow x\begin{bmatrix}1\\ -2\end{bmatrix}+y\begin{bmatrix}3\\0\end{bmatrix}=\begin{bmatrix}1x+3y\\ -2x\end{bmatrix} [xy]x[12]+y[30]=[1x+3y2x]

[x,y]是起始向量,经过矩阵转换后,变换成了[1x+3y,-2x],这是变换后的向量
这里两个基合并在一起变成了2*2矩阵

[ 3 2 − 2 1 ] \begin{bmatrix}3 & 2\\ -2& 1\end{bmatrix} [3221]

代表基的变换
若是列向量相关,则两个基平行,张成一维空间
比如说

[ 2 − 2 1 − 1 ] \begin{bmatrix}2 & -2\\ 1 & -1\end{bmatrix} [2121]

F n F^{n} Fn代表的是n维空间
所以说,线性变换的实质是操纵空间

三、矩阵乘法的实质是什么?

矩阵乘法的实质是复合变换

[ 1 1 0 1 ] ( [ 0 − 1 1 0 ] [ x y ] ) = [ 1 − 1 1 0 ] [ x y ] \begin{bmatrix}1 & 1\\ 0 & 1\end{bmatrix}\left ( \begin{bmatrix}0 & -1\\ 1& 0\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} \right )=\begin{bmatrix}1 & -1\\ 1 & 0\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} [1011]([0110][xy])=[1110][xy]
 剪切矩阵         旋转矩阵               复合矩阵

[ 0 2 1 0 ] \begin{bmatrix}0 & 2\\ 1 & 0\end{bmatrix} [0120]代表M2, [ 1 − 2 1 0 ] \begin{bmatrix}1 & -2\\ 1 & 0\end{bmatrix} [1120]代表M1

M 2 M 1 ≠ M 1 M 2 M2M1\neq M1M2 M2M1=M1M2是因为转换效果不一样,对一个空间中的线段先剪切再旋转,和先旋转再剪切是不一样的

四、行列式的实质是什么?

二阶行列式的实质是:矩阵中两个向量围成的平行四边形的面积
在这里插入图片描述
三阶行列式代表的是:六面体体积
三阶行列式的值为0,矩阵的列必然线性相关
秩为三,代表基组成三维空间
秩为二,代表基组成二维平面,其中两个基向量是平行的
秩为一,代表一条直线
秩为0,代表一个点
二阶行列式的值为(面积不可能是负值),代表一张纸的背面,或者是i向量在j向量顺时针后面
在这里插入图片描述

五、线性变换的一些基本情况

A x ⃗ = v ⃗ A\vec{x}=\vec{v} Ax =v 代表的是一个向量在翻转矩阵的作用下,翻转成了另一个向量
A A A不为零时, x ⃗ \vec{x} x 向量经过变换与 v ⃗ \vec{v} v 重合
A − 1 A^{-1} A1矩阵代表按照原来的转换方向将向量返回成原来的情况
A − 1 A A^{-1}A A1A代表的是先变换再转换回去,表示什么都没做

点积如何理解?

[ 4 1 ] ⋅ [ 2 − 1 ] = 4 × 2 + 1 × ( − 1 ) = 7 \begin{bmatrix}4\\ 1\end{bmatrix}\cdot \begin{bmatrix}2\\ -1\end{bmatrix}=4\times 2+1\times\left ( -1 \right )=7 [41][21]=4×2+1×(1)=7
   v ⃗ \vec{v} v           w ⃗ \vec{w} w

在这里插入图片描述
w ⃗ \vec{w} w v ⃗ \vec{v} v 上投影,投影的长度和v长度相乘,也可以 v ⃗ \vec{v} v w ⃗ \vec{w} w 上投影

叉积如何理解?
v ⃗ × w ⃗ = p ⃗ \vec{v}\times \vec{w}=\vec{p} v ×w =p
 叉积
其实质是: v ⃗ \vec{v} v w ⃗ \vec{w} w 的叉积得到另一个向量 p ⃗ \vec{p} p ,向量 p ⃗ \vec{p} p 的长度是 v ⃗ \vec{v} v w ⃗ \vec{w} w 面积大小,方向是右手定则

六、特征值,特征向量的实质是什么?

A X ⃗ = λ X ⃗ A\vec{X}=\lambda \vec{X} AX =λX
一个向量在A的作用下变换后,向量位置并没有改变
意味着矩阵对它的作用仅仅是拉伸或压缩而已,如同一个标量
在这里插入图片描述
i ⃗ \vec{i} i j ⃗ \vec{j} j 是单位向量,组成基坐标系与[-1,1]组成了二维平面,三个向量符合平行四边形法则
这时,基坐标系发生了变换,此时[-1,1]也随之变换。基坐标系变换成了
[ 3 1 0 2 ] \begin{bmatrix}3 & 1\\ 0 & 2\end{bmatrix} [3012]
在这里插入图片描述
[-1,1]只是变长了2倍,说明[-1,1]是特征向量

所以说,基坐标系发生了变换,带动其坐标系内所有空间向量发生了变化,在这一过程中,方向位置没有改变的便是特征向量。
特征向量不止一个,对应的特征值也不止一个 λ \lambda λ是特征值,代表的是放大或缩小的倍数

在三阶矩阵中,A代表的是基坐标系的变化,使一个六面体发生了旋转,旋转后有的向量不发生变化,此时,旋转轴就是特征向量。

七、基的变换

在这里插入图片描述
将基坐标发生变换
在这里插入图片描述
再定义 b 1 ⃗ \vec{b1} b1 为[1,0],定义 b 2 ⃗ \vec{b2} b2 为[0,1]
相当于同一坐标用不同的语言(数字)来描述。
对一个矩阵来说,求n次方不好算,但是对于基坐标来说,n次方无非就是将基坐标伸缩
所以,基向量很好(基坐标变换),将特征向量变成基向量,这便是矩阵对角化
[ 3 1 0 2 ] [ 1 − 1 0 1 ] \begin{bmatrix}3 & 1\\ 0 & 2\end{bmatrix}\begin{bmatrix}1 & -1\\ 0 & 1\end{bmatrix} [3012][1011]
              基变换矩阵

[ 1 − 1 0 1 ] − 1 [ 3 1 0 2 ] [ 1 − 1 0 1 ] = [ 3 0 0 2 ] \begin{bmatrix}1 & -1\\ 0& 1\end{bmatrix}^{-1}\begin{bmatrix}3 & 1\\ 0 & 2\end{bmatrix}\begin{bmatrix}1 & -1\\ 0 & 1\end{bmatrix}=\begin{bmatrix}3 &0 \\ 0 & 2\end{bmatrix} [1011]1[3012][1011]=[3002]

矩阵对角化条件:能张成全空间的特征向量
二阶矩阵有两个特征向量
三阶有3个特征向量

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

手写不期而遇

感谢你的打赏,也欢迎一起学习

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值