浅析多元回归中的“三差”:离差(Deviation)、残差(Residual)与误差(Error)

本文介绍了多元回归分析中离差(Deviation)、残差(Residual)与误差(Error)的区别。离差是样本真实值与平均值的偏离程度,只与样本有关。残差是因变量真实值与模型拟合值的差,是模型评估的重要依据。误差是衡量模型总体性质的随机变量,与样本无关。三者间的关系为:离差可分解为残差和回归差,而残差可以视为误差在样本层面的估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1. 综述

有不少小伙伴在初学多元回归模型的时候,会被一些术语搞得晕头转向,其中就包括经常出现的 离差(Deviation)、残差(Residual)与误差(Error)这三个术语看起来完全就是一回事儿啊!! 其实不然,这三个概念虽然有一定的关联性,但其描述的本质却完全不同。现在,就让我们就来简单聊聊这三者之间的区别吧!


2. 误差(Error)——模型的总体性质

误差(Error) 的英文本意就是“错误”。我们在日常生活中总是会犯这样或那样的错误,模型其实就是简化了的现实世界,其也必然会包含错误。而在多元回归模型中,我们在建立模型的时候就已经加入了这个错误:误差项。比如,在多元回归模型:
Y = β 0 + ∑ i = 1 p X i β i + ϵ Y = \beta_0 + \sum_{i=1}^{p} X_i \beta_i + \epsilon Y=β0+i=1pXiβi+

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值