sep_aspp_head源码

sep_aspp_head源码

在这里插入图片描述

DepthwiseSeparableASPPHead继承了ASPPHead
多了两个属性c1_in_channels, c1_channels

(1)DepthwiseSeparableASPPModule继承了ASPPModule

在这里插入图片描述

(2)其中包含有DepthwiseSeparableConvModule这个模块,即深度可分离卷积(包含depthwise_conv 和 pointwise_conv)
depthwise_conv的输入输出通道相同的分组卷积,groups为分组(值为输入通道数),那么每一个通道对应一个只有一个通道的卷积核进行卷积,卷积核的个数为in_channels。之后就是pointwise_conv,就是普通的1×1卷积,降低通道数

在这里插入图片描述

### ASPP计算机视觉和深度学习中的应用 空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)是一种用于增强卷积神经网络处理多尺度物体能力的技术。ASPP通过在同一层上采用多个不同的膨胀率进行卷积操作,从而捕捉到不同尺度的信息[^2]。 #### 工作原理 ASPP模块通常由几个并行的分支组成,每个分支执行带有不同扩张率的空洞卷积。这些分支能够有效地扩大感受野而不增加参数量或计算成本。具体来说: - **多尺度特征提取**:利用多种扩张因子来捕获输入图片的不同层次细节。 - **全局平均池化**:有时会加入一个全局平均池化的分支,以便引入上下文信息。 ```python import torch.nn as nn class ASPP(nn.Module): def __init__(self, in_channels, out_channels, rates=[6, 12, 18]): super(ASPP, self).__init__() # 定义各个分支 modules = [] for rate in rates: modules.append( nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=rate, dilation=rate), nn.ReLU() ) ) # 添加全局平均池化分支 modules.append( nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1), nn.ReLU(), nn.Upsample(scale_factor=(input_height, input_width), mode='bilinear', align_corners=True) ) ) self.aspp_branches = nn.ModuleList(modules) def forward(self, x): outputs = [branch(x) for branch in self.aspp_branches] output = sum(outputs) return output ``` 此代码片段展示了如何构建一个简单的ASPP结构,在实际应用中可能还需要考虑更多因素如批量归一化等优化措施[^3]。 #### 应用领域 ASPP广泛应用于各种基于深度学习的任务当中,尤其是在语义分割方面表现出色。它可以帮助模型更好地理解复杂场景下的对象及其相互关系,提高预测精度。此外,由于其高效的特性,也被用来改进其他视觉识别任务的效果[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值