sep_aspp_head源码

sep_aspp_head源码

在这里插入图片描述

DepthwiseSeparableASPPHead继承了ASPPHead
多了两个属性c1_in_channels, c1_channels

(1)DepthwiseSeparableASPPModule继承了ASPPModule

在这里插入图片描述

(2)其中包含有DepthwiseSeparableConvModule这个模块,即深度可分离卷积(包含depthwise_conv 和 pointwise_conv)
depthwise_conv的输入输出通道相同的分组卷积,groups为分组(值为输入通道数),那么每一个通道对应一个只有一个通道的卷积核进行卷积,卷积核的个数为in_channels。之后就是pointwise_conv,就是普通的1×1卷积,降低通道数

在这里插入图片描述

### 使用深度可分离卷积优化ASPP的方法及实现 #### 深度可分离卷积简介 深度可分离卷积是一种特殊的卷积操作,它通过将标准卷积分解为空间卷积和逐点卷积两个阶段来减少计算复杂度。这种分解不仅降低了模型的参数数量,还减少了所需的浮点运算次数(FLOPs),从而提高了效率[^1]。 #### ASPP结构概述 Atrous Spatial Pyramid Pooling (ASPP) 是一种广泛应用于语义分割任务中的有效模块。其核心思想是在不同尺度上应用膨胀卷积(atrous convolution),以捕捉多尺度特征并扩大感受野。传统ASPP通常采用多个平行的标准卷积分支来进行处理[^3]。 #### 优化方案:引入深度可分离卷积至ASSP 为了提升性能同时保持较低的计算成本,在ASPP中替换原有的标准卷积层为深度可分离卷积是一个可行的选择。具体来说: - **空间维度降维**:对于每个扩张率下的子模块,先利用深度wise卷积提取局部纹理信息; - **通道融合增强表达力**:随后接一个point-wise卷积负责跨信道的信息交互与聚合; 这样做既保留了原有设计的优点——能够有效地捕获全局上下文关系,又因采用了更高效的卷积形式而显著减轻了负担。 ```python import torch.nn as nn class DepthwiseSeparableConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1): super(DepthwiseSeparableConv, self).__init__() # Depthwise Convolution self.depth_conv = nn.Conv2d( in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_channels, bias=False, dilation=dilation ) # Pointwise Convolution self.point_conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, bias=True ) def forward(self, x): x = self.depth_conv(x) x = self.point_conv(x) return x def build_depthwise_separable_aspp(inplanes, output_stride): rates = [6, 12, 18] modules = [] for rate in rates: depth_sep_conv = DepthwiseSeparableConv( in_channels=inplanes, out_channels=256, kernel_size=3, stride=1, padding=rate, dilation=rate ) modules.append(depth_sep_conv) global_pool = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Conv2d(inplanes, 256, 1), nn.BatchNorm2d(256), nn.ReLU() ) modules.append(global_pool) aspp_module = nn.ModuleList(modules) return aspp_module ``` 上述代码定义了一个基于深度可分离卷积构建的新版ASPP组件`build_depthwise_separable_aspp()`函数。此版本相比原生实现了更低资源消耗的同时维持甚至增强了原始功能特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值