CVPR-2017-paper MoNet(空间卷积方法)

MoNet(2017-CVPR)空间方法

**2017-CVPR**

摘要

到目前为止,大多数深度学习研究都集中在处理一维、二维或三维欧几里德结构的数据,如声音信号、图像或视频。近年来,几何深度学习越来越受到人们的关注,试图将深度学习方法推广到非欧几里德结构的数据,如图和流形,在网络分析、计算社会科学或计算机图形学等领域有着广泛的应用。在本文中,我们提出了一个统一的框架,允许将CNN架构推广到非欧几里德域(图和流形),并学习局部、平稳和组合任务特定的特征。

主要贡献

  1. 提出了混合模型网络(MoNet),一个允许在非欧几里德域(如图和流形)上设计卷积深体系结构的通用框架。
  2. 方法遵循空间域方法的一般原理,将类似卷积的操作作为模板匹配,与图或流形上的局部内在“面片”匹配。关键的新颖之处在于提取面片的方式:以前的方法使用固定的面片,例如在测地坐标系或扩散坐标系中,我们使用参数化构造。

图的深度学习

拉普拉斯矩阵:
在这里插入图片描述
D是图的度矩阵,W是图的邻接矩阵。
拉普拉斯算子特征分解:在这里插入图片描述
在这里插入图片描述
对于依稀信号f,傅里叶转换为:
在这里插入图片描述
那么给定两个信号f,g(卷积核),谱卷积定义为:
在这里插入图片描述
改进:切比雪夫多项式基的显式展开来表示谱滤波器
切比雪夫多项式定义:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

方法

  1. 定义多个内核函数(是否已参数化)以测量目标节点与其他节点之间的相似性
  2. 卷积核是这些核函数的权重

根据上下文,我们用x表示流形上的一个点或一个图的顶点,并考虑x的邻域中的点y∈N x _x x。对于每个这样的y,我们将伪坐标u(x,y)的d维向量相关联。在这些坐标系中,我们定义了一个加权函数(核)
wΘ(u)=(w1(u)。,wJ(u)),
由一些可学习的参数Θ参数化。因此,patch操作符可以用以下通用形式编写

在这里插入图片描述
所以空间推广为:
在这里插入图片描述

我们构造的两个关键选择是伪坐标u和权函数w(u)。
本文W(u)选择为:
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值