问题提出:
你是一家工厂老板,有四种设备ABCD,擅长生产两种甲乙两种产品,但是生产过程难免带来机器损耗,比如A用了12个小时就会坏掉。生产一件甲产品需要损害机器A两个小时,B1个小时,C4个小时,并且生产成功了的话,可以获得2元钱。
原始问题
问:你要生产几件甲,生产几件乙可以使得利润最大?
答:求解下列线性规划问题:
对偶问题
问:如果这一天有一个大老板说要收购你的两台机器,叫你放弃自己生产,它至少要给你多少钱你才会同意。
大家好好想一想,当然就是原始问题的最大利润喽,大老板只能多给,不能少给,否则就自己生产。
这就是原始对偶问题。
站在大老板的角度,他希望出越少钱越好,希望收购费用便宜。但是太便宜了你不愿意,你想自己生产。所以大老板会是一个最小化 min \min min问题。
下面我们开始写出这个对偶问题的线性规划数学模型。
站在大老板的角度:
有人疑惑, 为什么我不直接设收购ABCD四台机器价格分别为 z 1 , z 2 , z 3 , z 4 z_1,z_2,z_3,z_4 z1,z2,z3,z4,而是设机时价。因为设机时价更加方便后面约束条件的书写。
但是光站在大老板的角度是不够的,因为大老板巴不得四个变量全部为0,从而收购价为0。所以大老板会站在工厂的角度思考,满足什么样的条件它才愿意给我,而不是自己生产。从而有:
站在工厂的角度:
解释一下,第1个约束条件表示,生产出一件甲,利润是2元(右边),左边是说收购 生产A所需要的各个机器时间 要花的钱,站在工厂的角度,当然是希望收购价比利润高。所以大于等于。其他条件依次类推分析。
最终为:
原始与对偶的联系: