Pytorch之深入理解torch.nn.Parameter()

本文详细介绍了在PyTorch中,nn.Parameter与tensor的requires_grad=True之间的差异。nn.Parameter不仅使张量变为可训练,还会将其自动注册到模型的参数列表中,便于优化。通过实例展示了当直接使用requires_grad=True时,张量不会被包含在model.parameters()中,需要手动优化。总结了nn.Parameter的主要功能,并提供了验证代码以说明其效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先看一段代码:

import torch
import torch.nn as nn
a=torch.tensor([1,2],dtype=torch.float32)
print(a)
print(nn.Parameter(a))
print(nn.parameter.Parameter(a))

在这里插入图片描述

结论:

  1. nn.Parameter=nn.parameter.Parameter
  2. parameter本质仍然是一个tensor。
  3. nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter,并且会向宿主模型注册该参数,成为一部分。即model.parameters()会包含这个parameter。从而,在参数优化的时候可以自动一起优化,这就不需要我们单独对这个参数进行优化啦。

其中2的证明如下:
在这里插入图片描述


补充

不少童鞋会想这个nn.Parameter(tensor)和对一个tensor直接进行`requires_grad=True`有什么区别?这两者不是一样的! 即下面的w1和w2功能是不一样的:
#对一个tensor直接进行`requires_grad=True`
w1=torch.tensor([1,2],dtype=torch.float32,requires_grad=True)

#nn.Parameter(tensor)
a=torch.tensor([3,4],dtype=torch.float32)
w2=nn.Parameter(a)

功能哪里不一样?其实就是上面说的结论中的第3条,对一个tensor直接进行requires_grad=True确实也变成了可训练的tensor,但这个tensor无法像parameter那样自动包括在 model.parameters()中。

最后,我们做一个验证:

class mod(nn.Module):
    def __init__(self):
        super(mod,self).__init__()
        self.w1=torch.tensor([1,2],dtype=torch.float32,requires_grad=True)
        a=torch.tensor([3,4],dtype=torch.float32)
        self.w2=nn.Parameter(a)
    def forward(self,inputs):
        o1=torch.dot(self.w1,inputs)#使用了带梯度的普通tensor
        o2=torch.dot(self.w2,inputs)#使用了parameter
        return o1+o2        
model=mod()
for p in model.parameters():
    print(p)

在这里插入图片描述
我们发现,只有parameter会在model.parameters()中,这意味这,w1参数需要手动单独优化。

补充:
上述好像只打印了参数,没有打印参数名称,有点low。高级的如下:

model.state_dict()
#或者
for para in model.named_parameters():
	print(para)


PyTorch是一个基于Python的科学计算库,主要针对深度学习任务。在PyTorch中,torch.nn是一个用于构建神经网络模型的模块。 torch.nn模块提供了一系列神经网络层和函数,方便用户构建自定义的神经网络。用户可以通过继承torch.nn.Module类来定义自己的神经网络模型。torch.nn模块中常用的类包括各种层(例如全连接层、卷积层、池化层和循环层等)、非线性激活函数和损失函数等。 在使用torch.nn模块构建神经网络时,用户需要实现模型的前向传播函数forward()。该函数定义了输入数据在神经网络中的流动方式,即通过层和函数的组合计算输出。在forward()函数中,用户可以使用已定义的层和函数进行计算,也可以实现自定义的操作。 torch.nn模块中的另一个重要概念是参数(parameter)。参数是模型中需要学习的变量,例如网络层的权重和偏置项。用户可以通过在模型中定义torch.nn.Parameter对象来创建参数,并在forward()函数中进行使用。 除了torch.nn模块外,PyTorch还提供了其他的工具和模块来辅助神经网络的训练和优化过程。例如torch.optim模块包含了各种优化算法,如随机梯度下降(SGD)、Adam等,用于更新模型中的参数。torch.utils.data模块提供了数据处理和加载的工具,方便用户使用自己的数据训练模型。 总之,torch.nn模块是PyTorch中用于构建神经网络模型的重要组成部分。通过使用torch.nn的各种类和函数,用户可以方便地创建自己想要的神经网络结构,并利用PyTorch强大的计算能力和优化算法来训练和优化模型。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值