详解math.isclose()以及np.allclose()用法

本文探讨了接近性的哲学概念,并介绍了`math.isclose()`和`numpy.allclose()`这两个Python函数在判断数值接近性时的应用。它们允许设置相对和绝对容忍值,用于灵活地比较浮点数。`math.isclose()`适用于单个数值比较,而`numpy.allclose()`则适用于数组比较,返回所有元素是否接近的布尔结果。理解这两个函数的用法对于精确计算和科学编程至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

close

接近这个词具有哲学含义,我们可以分为绝对接近和相对接近。

  1. 比如规定两个数相差3以内,就是接近。
  2. 比如规定两个数相差两者绝对值最大值的1%以内,就是接近。

稍微解释一下后者,例如有995和1000,两者绝对值最大值是1000,1%=10。因而995和1000是接近的。

如果按照前者,995和1000是不接近的。

我们发现,各有各的好处。

math

import math

math.isclose()综合了绝对接近和相对接近两个选项:

math.isclose(a, b, rel_tol=1e-09, abs_tol=0.0)

其中rel_tol就是相对忍耐值,abs_tol就是绝对忍耐值。到时候会判断两个忍耐值哪个最大,然后取那个忍耐值作为判断是否接近的依据。简而言之就是下面这个公式:

abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol).

结果是一个布尔值。

numpy

import numpy as np

这个api也是同理,但是可以同时比较多个,多个都接近,那么返回接近。

np.allclose(a, b, rtol=1e-05, atol=1e-08)

其有一点比较有意思,和上面不同,上面是绝对忍耐和相对忍耐的最大值作为最终的忍耐,这里是绝对忍耐加上相对忍耐(abs(b)*rtol+atol)

a=np.array([1,2])
b=np.array([2,3])
np.allclose(a,b,rtol=0.1,atol=0.9)

True

可以验证,去掉任何一个忍耐值,结果都会是False。

### Python `math.isclose` 函数详解 #### 定义与功能 `math.isclose` 是用于判断两个浮点数是否接近相等的函数。由于计算机内部表示浮点数存在精度损失,直接通过等于运算符 (`==`) 判断两浮点数值可能不准确。此方法提供了一种更可靠的方式来评估两者之间的差异是否在可接受范围内[^1]。 #### 参数说明 该函数接收四个参数: - **a**: 浮点数之一。 - **b**: 另一个待比较的浮点数。 - **rel_tol=1e-09**: 相对容差,默认值为 \(1 \times 10^{-9}\),即允许的最大相对误差。 - **abs_tol=0.0**: 绝对容差,默认情况下设置为零,意味着仅当相对容差条件满足时才返回 True。 #### 使用实例 以下是几个关于如何使用 `math.isclose` 的例子: ```python import math result_1 = math.isclose(1.0, 1.0 + 1e-10) # 默认条件下应返回 False print(f"Result of isclose with default tolerance: {result_1}") custom_tolerance_result = math.isclose( 1.0, 1.0 + 5 * (1e-8), rel_tol=1e-7 ) # 自定义相对容差下应该返回 True print(f"Custom relative tolerance result: {custom_tolerance_result}") ``` 对于绝对容差的应用场景如下所示: ```python very_small_number_a = 1e-10 very_small_number_b = 2e-10 absolute_tolerance_check = math.isclose( very_small_number_a, very_small_number_b, abs_tol=1e-9 ) print(f"With absolute tolerance set to 1e-9: {absolute_tolerance_check}") ``` 上述代码展示了不同情况下的近似度检测逻辑及其预期输出结果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值