详解math.isclose()以及np.allclose()用法

本文探讨了接近性的哲学概念,并介绍了`math.isclose()`和`numpy.allclose()`这两个Python函数在判断数值接近性时的应用。它们允许设置相对和绝对容忍值,用于灵活地比较浮点数。`math.isclose()`适用于单个数值比较,而`numpy.allclose()`则适用于数组比较,返回所有元素是否接近的布尔结果。理解这两个函数的用法对于精确计算和科学编程至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

close

接近这个词具有哲学含义,我们可以分为绝对接近和相对接近。

  1. 比如规定两个数相差3以内,就是接近。
  2. 比如规定两个数相差两者绝对值最大值的1%以内,就是接近。

稍微解释一下后者,例如有995和1000,两者绝对值最大值是1000,1%=10。因而995和1000是接近的。

如果按照前者,995和1000是不接近的。

我们发现,各有各的好处。

math

import math

math.isclose()综合了绝对接近和相对接近两个选项:

math.isclose(a, b, rel_tol=1e-09, abs_tol=0.0)

其中rel_tol就是相对忍耐值,abs_tol就是绝对忍耐值。到时候会判断两个忍耐值哪个最大,然后取那个忍耐值作为判断是否接近的依据。简而言之就是下面这个公式:

abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol).

结果是一个布尔值。

numpy

import numpy as np

这个api也是同理,但是可以同时比较多个,多个都接近,那么返回接近。

np.allclose(a, b, rtol=1e-05, atol=1e-08)

其有一点比较有意思,和上面不同,上面是绝对忍耐和相对忍耐的最大值作为最终的忍耐,这里是绝对忍耐加上相对忍耐(abs(b)*rtol+atol)

a=np.array([1,2])
b=np.array([2,3])
np.allclose(a,b,rtol=0.1,atol=0.9)

True

可以验证,去掉任何一个忍耐值,结果都会是False。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值