用pytorch实现深度学习;60分钟闪电战

来自pytorch官网:添加链接描述

1、Tensors 张量

(1)、导入包

import torch
import numpy as np

(2)、tensor初始化

  1. 直接通过数据创建
data = [[1,2],[3,4]]
x_data = torch.tensor(data)
print(x_data)
"""
tensor([[1, 2],
        [3, 4]])
"""
  1. 通过numpy数组创建
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
print(np_array)
print(x_np)
"""
[[1 2]
 [3 4]]
tensor([[1, 2],
        [3, 4]], dtype=torch.int32)
"""
  1. 通过其他张量创建
x_ones = torch.ones_like(x_data) # 创建一个新的全是1的tensor,大小和数据类型和x_data一样
print(f"ones tenser:\n {x_ones}\n")
x_rand = torch.rand_like(x_data,dtype=torch.float)
print(f"Random Tensor: \n {x_rand} \n")
"""
ones tenser:
 tensor([[1, 1],
        [1, 1]])

Random Tensor: 
 tensor([[0.1373, 0.8053],
        [0.6573, 0.9279]]) 
"""
  1. 随机创建
shape = (2, 3) # shape is a tuple of tensor dimensions. 
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)

print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")
"""
Random Tensor: 
 tensor([[0.5519, 0.8138, 0.0425],
        [0.7606, 0.5727, 0.4184]]) 

Ones Tensor: 
 tensor([[1., 1., 1.],
        [1., 1., 1.]]) 

Zeros Tensor: 
 tensor([[0., 0., 0.],
        [0., 0., 0.]])
"""

(3)、tensor属性attributes

tensor的属性包括:shape、datatype、以及存储的设备

tensor = torch.rand(3,4)
print(f"shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
"""
shape of tensor: torch.Size([3, 4])
Datatype of tensor: torch.float32
Device tensor is stored on: cpu
"""

(4)、tensor操作operation

包括:转置(transposing)、索引(indexing)、切片(slicing)、数学运算(mathematical oprations)、线性代数(linear algebra)、随机抽样(random sampling)等等,都在这里得到了全面的描述。

  1. 在GPU上运行
# We move our tensor to the GPU if available
if torch.cuda.is_available():
  tensor = tensor.to('cuda')
  print(f"Device tensor is stored on: {tensor.device}")
"""
Device tensor is stored on: cuda:0
"""
  1. 索引和切片
tensor = torch.ones(4, 4)
tensor[:,1] = 0
print(tensor)
"""
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]])
"""
  1. 连接张量torch.cat和torch.stack
tensor = torch.ones(4,4)
t1 = torch.cat([tensor,tensor],dim = 1)
print(t1)
t2 = torch.cat([tensor,tensor],dim = 0)
print(t2)
"""
tensor([[1., 1., 1., 1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1., 1., 1., 1.]])
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
"""
  1. tensor乘法
t = torch.ones(3,3)
#元素乘法
t4 = t * t
t5 = t.mul(t)
print(f"元素乘法:t * t : \n{t4}\n t.mul(t):\ng{t5}")
# 矩阵乘法
t6 = t @ t.T
t7 = t.matmul(t.T)
print(f"矩阵乘法:t @ t.T : \n{t6}\n t.matmul(t.T):\ng{t7}")
"""
元素乘法:t * t : 
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])
 t.mul(t):
gtensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])
矩阵乘法:t @ t.T : 
tensor([[3., 3., 3.],
        [3., 3., 3.],
        [3., 3., 3.]])
 t.matmul(t.T):
gtensor([[3., 3., 3.],
        [3., 3., 3.],
        [3., 3., 3.]])
"""
  1. 就地操作
    就地操作(In-palce):具有 _ 后缀的操作是就地操作。例如:x.copy_(y),x.t_(),将改变x。
print(t,"\n")
t.add_(5)
print(t)
"""
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]]) 

tensor([[6., 6., 6.],
        [6., 6., 6.],
        [6., 6., 6.]])
"""

(5)、和NumPy的联系

Tensors on the CPU and NumPy arrays can share their underlying memory locations, and changing one will change the other.
在CPU上的张量和NumPy共享相同的存储位置,改变一个也会改变另一个

k = torch.ones(4)
print(f"k: {k}")
print(k.dtype)
# 将tensor类型改成numpy
n = k.numpy()
print(f"n: {n}")
print(n.dtype)
# 改变k,n也会改变
k.add_(1)
print(f"change k:{k}")
print(f"change n:{n}")

# 将numpy类型改成tensor
n = np.ones(5)
k = torch.from_numpy(n)
print(f"n: {n}")
print(n.dtype)
print(f"k: {k}")
print(k.dtype)

#改变n,k也会改变,略
"""
k: tensor([1., 1., 1., 1.])
torch.float32
n: [1. 1. 1. 1.]
float32
change k:tensor([2., 2., 2., 2.])
change n:[2. 2. 2. 2.]
n: [1. 1. 1. 1. 1.]
float64
k: tensor([1., 1., 1., 1., 1.], dtype=torch.float64)
torch.float64
"""
"""

2、介绍torch.autograd

torch.autograd是PyTorch的自动微分引擎,为神经网络训练提供动力。在本节中,您将从概念上了解autograd如何帮助神经网络训练。

(1)、背景background

神经网络是对输入数据进行映射的嵌套函数的集合
这些函数通过参数来定义(包括权重weights和偏置biases)。
在pytorch中这些参数都是储存在tensors
训练神经网络NN包括两步:
1、正向传播神经网络对输出进行最佳猜测。它通过输入训练样本然后执行每个函数来进行猜测。
2、反向传播在反向运算中,神经网络通过其猜测的输出和真实输出的误差,按比例调整其参数。它通过从输出向前遍历,收集误差相对于函数参数(梯度)的导数,并使用梯度下降优化参数来实现这一点。

(2)、在pytorch中的用法

目标:通过torchvision加载一个与训练好的resnet 18 模型。创造一个随机数据张量来表示图片(3通道、长64、宽64),对应的标签随意的初始化。在预训练模型中的标签尺寸为(1,1000)

"""
目标:通过torchvision加载一个与训练好的resnet 18 模型。
创造一个随机数据张量来表示图片(3通道、长64、宽64),对应的标签随意的初始化。
在预训练模型中的标签尺寸为(1,1000)
"""
import torch
from torchvision.models import resnet18, ResNet18_Weights
model = resnet18(weights=ResNet18_Weights.DEFAULT)
data = torch.rand(1, 3, 64, 64)
labels = torch.rand(1, 1000)
"""
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /var/lib/jenkins/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth

  0%|          | 0.00/44.7M [00:00<?, ?B/s]
 50%|####9     | 22.3M/44.7M [00:00<00:00, 234MB/s]
100%|##########| 44.7M/44.7M [00:00<00:00, 241MB/s]
"""
# 正向传播:把训练样本输入到模型中的到模型中
prediction = model(data)

# 计算损失函数:预测结果 - 真实结果(标签)
loss = (prediction - labels)

# 反向传播:将损失函数通过神经网络反向传播来调整网络参数(权重、偏置)
# .backward()反向传播误差张量loss,Autograd在其中计算每一层参数的梯度,并粗存在参数属性中的.grad里面
loss.backward()

# 优化器:这里使用SGD(学习率0.01,动量0.9),在优化其中优化模型中所有的参数
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)

# 启动梯度下降:调用.step()来启动梯度下降。优化器通过存储在.grad中的梯度来调整每个参数。
optim.step() #gradient descent

(3)、Autograd

"""
具体看autograd是如何收集梯度。

"""
import torch

# 创建两个张量a和b。requires_grad=True:意味着autograd应该跟踪对它们的每一次操作。
a = torch.tensor([2., 3.], requires_grad=True)
b = torch.tensor([6., 4.], requires_grad=True)
Q = 3*a**3 - b**2
# 假设a,b是神经网络的参数,Q是误差。在神经网络训练中我们想要计算误差对于参数的梯度
# ∂Q/∂a = 9*a^2
# ∂Q/∂b = -2*b
# 对误差张量Q调用.backward(),autograd就会计算Q对a和n的偏导,存储在a.grad和b.grad中
# 我们需要传入一个梯度参数到.backward()中,这个参数就是Q自身的梯度,所以和Q有相同的形状
# ∂Q/∂Q = 1
external_grad = torch.tensor([1., 1.])
Q.backward(gradient=external_grad)
# 查看autograd计算的梯度是否正确
print(9*a**2 == a.grad)
print(-2*b == b.grad)
"""
tensor([True, True])
tensor([True, True])
"""

补充1:通过autograd实现向量计算 我有点没搞懂,之后再写

(4)、计算图

autograd实际上是有Function 对象组成的有向无环图(directed acyclic graph, DAG )包括数据(tensors)和一些可执行的操作(生成新的tensors)。在这个DAG中,叶是输入张量,根是输出张量。通过从根到叶跟踪该图,可以使用链式规则自动计算梯度。
在前向传播中,autograd同时做两件事:

  1. 运行forward操作计算结果张量
  2. 在DAG中维护forward操作的梯度函数(gradient function)
    当调用.backward()之后,反向传播从DAG的root开始:
  3. 根据每个.grad_fn计算梯度
  4. 将计算结果存储到参数张量的.grad属性中
  5. 使用链式法则,将损失函数一直传递到叶张量

下面是我们示例中DAG的可视化表示。在图中,箭头指向正向传播过程的方向。节点表示正向传播过程中每个操作的backward函数。蓝色的叶节点表示我们的叶张量a和b。
在这里插入图片描述

(4)、冻结参数

有时候有一些参数不需要再进行计算梯度了,就可以将其重计算梯度的DAG图中删除掉。具体的操作就是将requires_grad设置为False。
即使只有一个输入张量requires_grad=True,运算的输出张量也需要梯度。

x = torch.rand(5, 5)
y = torch.rand(5, 5)
z = torch.rand((5, 5), requires_grad=True)

a = x + y
print(f"Does `a` require gradients? : {a.requires_grad}")
b = x + z # 即使只有一个输入张量requires_grad=True,运算的输出张量也需要梯度。
print(f"Does `b` require gradients?: {b.requires_grad}")
"""
Does `a` require gradients? : False
Does `b` require gradients?: True
"""

在NN中,不计算梯度的参数通常被称为冻结参数。如果您事先知道不需要这些参数的梯度,那么“冻结”部分模型是很有用的(这通过减少自动梯度计算提供了一些性能优势)。

3、神经网络

(1)、定义神经网络

神经网络通过torch.nn包来构建。
torch.nn依赖autograd来构建模型
nn.Module包括layers和forward(input)

下面是一个网络分类图片的例子:
这是一个简单的前馈网络。它将输入数据一个接一个地传入layers中,然后最终给出输出结果。
这是一个简单的前馈网络。它将输入数据一个接一个地传入layers中,然后最终给出输出结果。

典型的神经网络训练流程:

  1. 首先定义神经网络,其中包括科学系的参数(权重和偏置)
  2. 创建输入数据集
  3. 将输入数据传入到神经网络中,得到输出结果
  4. 计算损失(这个输出令和正确结果之间的差值)
  5. 将损失函数的梯度gradient传回神经网络的各层参数上
  6. 更新神经网络的参数:最简单的更新规则:weight = weight - learning_rate * gradient
# 一个例子
# 定义network
import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5) # 1个输入图像通道,6个输出通道,5x5卷积核
        self.conv2 = nn.Conv2d(6, 16, 5) # 6个输入图像通道,16个输出通道,5x5卷积核
        # 仿射运算: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 5*5 from image dimension
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square, you can specify with a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()
print(net)
"""
Net(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
"""
# 只需要定义正向函数,反向函数(计算梯度的地方)是使用autograd自动定义的。
# 所以可以在正向函数中使用任何张量运算。

# 这个模型的可学习参数可以通过net.parameters()得到
params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weight
"""
10
torch.Size([6, 1, 5, 5])
"""
# 尝试一个随机的32x32输入。注:此网络(LeNet)的预期输入大小为32x32。
# 要在MNIST数据集上使用此网络,请将数据集中的图像大小调整为32x32。
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
"""
tensor([[ 0.1453, -0.0590, -0.0065,  0.0905,  0.0146, -0.0805, -0.1211, -0.0394,
         -0.0181, -0.0136]], grad_fn=<AddmmBackward0>)
"""
# 将所有参数的梯度缓冲区归零,并使用随机梯度进行反向运算:
net.zero_grad()
out.backward(torch.randn(1, 10))

小贴士:
torch.nn只处理小批次的数据(miini-batches),所以输入应该是小批次的样本而不是一个样本。比如nn.Conv2d需要输入的张量的形状是:nSamples x nChannels x Height x Width
如果只输入一个样本,就只是用input.unsqueeze(0)来添加一个虚假的批次数。

(2)、loss 函数

nn包下有几个不同的损失函数。一个简单的损失是:nn.MSELoss,它计算输出和目标之间的均方误差。

output = net(input)
target = torch.randn(10) # 虚假的目标(只是举个例子)
target = target.view(1,-1) # reshape这个目标,让其行为1,列随意,使其和输出一样的尺寸
criterion = nn.MSELoss() 
loss = criterion(output, target)# 计算实际输出output和目标target之间的均方差
print(loss)
"""
tensor(1.3581, grad_fn=<MseLossBackward0>)
"""
"""
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
      -> flatten -> linear -> relu -> linear -> relu -> linear
      -> MSELoss
      -> loss
"""
print(loss.grad_fn)  # MSELoss
print(loss.grad_fn.next_functions[0][0])  # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLU
"""
<MseLossBackward0 object at 0x7f0749d60940>
<AddmmBackward0 object at 0x7f0749d602e0>
<AccumulateGrad object at 0x7f0749d60190>
"""
# 之后反向传播损失,首先需要清除梯度
net.zero_grad()     # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
"""
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([ 0.0117,  0.0175,  0.0045,  0.0142, -0.0022, -0.0187])
"""

注:view()函数:添加链接描述

(3)、更新参数

实践中使用的最简单的更新规则是随机梯度下降(SGD):
weight = weight - learning_rate * gradient

# 代码实现:weight = weight - learning_rate * gradient
learning_rate = 0.01
for f in net.parameters():
    f.data.sub_(f.grad.data * learning_rate)

然而,当你使用神经网络时,你想使用各种不同的更新规则,如SGD、Nesterov SGD、Adam、RMSProp等。为了实现这一点,我们构建了一个小程序包:torch.optim,它实现了所有这些方法。使用它非常简单:

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
PyTorch是一个用于科学计算的开源深度学习框架,它可以帮助您构建神经网络和其他机器学习模型。下面是使用PyTorch实现深度学习的一些步骤: 1. 安装PyTorch:在开始使用PyTorch之前,您需要下载和安装PyTorch。您可以在PyTorch的官方网站上找到安装说明和文档。 2. 导入必要的库:在编写PyTorch代码之前,您需要导入必要的库。常用的库包括torch、numpy和matplotlib等。 3. 加载数据集:在训练神经网络之前,您需要加载数据集。PyTorch提供了许多内置的数据集,例如MNIST和CIFAR10等。您还可以加载自己的数据集。 4. 定义模型:在PyTorch中,您可以通过定义一个继承自torch.nn.Module的类来构建模型。您可以在此类中定义神经网络的层和计算。 5. 训练模型:在完成模型定义之后,您可以开始训练模型。在训练过程中,您需要定义损失函数和优化器,并对模型进行多次迭代训练。 6. 评估模型:在训练完成后,您可以使用测试数据集来评估模型的性能。您可以计算模型的准确性、精确度、召回率等指标。 7. 使用模型:在评估模型之后,您可以将训练好的模型用于实际应用中。您可以将模型保存为文件,并在需要的时候加载它来进行预测。 以上是使用PyTorch实现深度学习的一般步骤。实际应用中,您可能需要进行更多的调试和优化。但是,使用PyTorch可以使您的深度学习开发变得更加高效和方便。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭小儒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值