Action Segmentation数据集介绍——Breakfast

该文介绍了一个大规模的、带注释的早餐动作数据集,包含10种不同的烹饪活动,如juicecereals,由52位参与者在18个厨房环境中自然执行。数据集共有超过77小时的视频,旨在促进对目标导向人类活动的语法和语义恢复的研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Breakfast(The Breakfast Action Dataset)

简介

早餐动作数据集包括与早餐准备相关的10个动作,由18个不同厨房的52个不同的人执行。该数据集是最大的完全带注释的数据集之一。这些动作是在“自然环境下”记录的,而不是在单一的受控实验室环境中记录的。它由超过77小时(>4万帧)的录像组成。为了减少数据总量,所有视频都被下采样到320×240像素的分辨率,帧速率为15 fps。


来源:
@article{HildeKuehne2014TheLO,
title={The Language of Actions: Recovering the Syntax and Semantics of Goal-Directed Human Activities},
author={Hilde Kuehne and Ali Bilgin Arslan and Thomas Serre},
journal={Computer Vision and Pattern Recognition},
year={2014}
}

主页:https://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset/

在这里插入图片描述

细节

Cooking actibities

一共 10 种,包括:
在这里插入图片描述

illustration of the actions

juice
在这里插入图片描述
cereals
在这里插入图片描述

论文讲解

参见论文中第三章:Breakfast dataset
在这里插入图片描述


相关内容:
An end-to-end generative framework for video segmentation and recognition
The Language of Actions: Recovering the Syntax and Semantics of Goal-Directed Human Activities

### CT2US for Kidney Segmentation 数据集的详细介绍 CT2US for Kidney Segmentation 是一种用于肾脏分割的研究数据集,旨在促进跨模态医学图像分析的发展。该数据集结合了来自腹部计算机断层扫描 (CT) 和超声波 (US) 的成像数据,提供了丰富的标注信息以支持深度学习算法的应用 [^1]。 #### 数据集特点 - **多模态融合**:此数据集包含了配准后的 CT 和 US 图像对,允许研究者探索不同成像技术间的关联性并开发更鲁棒的分割模型。 - **高质量标注**:每张图像均经过放射科医生手动标记,确保边界定义清晰准确,从而提升训练样本的质量 [^2]。 #### 应用场景 在医学影像领域,利用深度学习实现自动化的肾脏分割具有重要意义。具体而言: - 它能够辅助临床决策过程,比如制定个性化治疗方案或者评估疾病进展程度; - 对于肾癌早期检测以及术后随访也有着不可替代的作用 。 #### 技术挑战 尽管如此,在实际操作过程中仍然面临诸多难题: - 如何有效地处理因设备差异而导致的空间分辨率不一致问题? - 需要设计特定架构来捕捉细粒度特征的同时兼顾整体结构信息 。 以下是基于 Transformer 架构的一个简单示例代码片段展示如何构建基础框架: ```python import torch.nn as nn class KidneySegmentationModel(nn.Module): def __init__(self, input_channels=1, num_classes=2): super(KidneySegmentationModel, self).__init__() # Example backbone using a simplified transformer encoder self.transformer_encoder = nn.TransformerEncoder( nn.TransformerEncoderLayer(d_model=input_channels * 64, nhead=8), num_layers=6) self.conv_head = nn.Conv2d(input_channels*64, num_classes, kernel_size=1) def forward(self, x): b, c, h, w = x.shape # Flatten spatial dimensions into sequence length dimension expected by transformers. x_flat = x.view(b, c*h*w).permute(0, 2, 1) encoded_features = self.transformer_encoder(x_flat.permute(1, 0, 2)) output = self.conv_head(encoded_features.permute(1, 0, 2).view(b,c,h,w)) return output ``` 上述代码仅作为概念验证用途,并未考虑优化性能或适配具体任务需求等因素 。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wei *

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值