【Conda】anaconda介绍及使用,创建、删除环境,生成/使用yml文件依赖、requirements.txt等

本文介绍了Anaconda作为Python环境管理工具的作用,强调了不同Python版本和包版本对代码运行的影响。通过yml文件,可以方便地创建和共享一致的开发环境。文章还详述了如何创建、删除环境,以及如何根据requirements.txt和yml文件安装依赖。此外,还讲解了如何导出环境为yml或txt文件,确保代码的一致性和可复用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单介绍一下anaconda

anaconda简单来说就是个python环境管理的工具。有朋友可能会说,我需要啥包装啥包不就好了,为啥需要好多个python环境?

  1. 有些代码可能在某个python版本下work,但是在另一个python版本下就不work了。最直接的例子就是python2和python3,或者python3的不同小版本。每次升级几乎都会有些小改动,有可能就会导致不work,所以最好还是别人用什么环境你就用什么环境效率最高。
  2. 你有时候可能会需要用到同一个包的不同版本。比如tensorflow,虽然我没太用过,但是印象里tensorflow是一代版本一代神…曾经在github上扒过一个tf的代码,就因为版本不匹配报了很多奇奇怪怪的错误。当你需要某个包的不同版本,你就没办法在同一个环境里同时安装了。

简单介绍一下yml文件依赖

这个文件格式啥的,感兴趣的朋友可以自己查一下。这里主要介绍一下关于用yml文件配置conda环境的事情。
很多写的比较好的代码,都会把他们用的环境写的很详细。一种是用pip导出环境,导出成requirements.txt,另一种是用conda导出环境依赖,导出成xxxx.yml。这时候你可以根据这个requirements.txt/xxxxx.yml文件创建你的python环境。这样就可以一键run起来别人的代码了。

Anaconda基本操作及打包环境为 yml文件/txt文件

创建新的conda环境

conda create -n <your_env_name> python=<required_version>

根据yml文件来创建conda环境

conda env create -n <your_env_name> -f xxxx.yml

根据txt文件来创建conda环境

# 这里要注意一下,必须要先激活你要安装依赖的conda环境再使用pip
# 在同一个环境下,使用pip install和conda install效果是一样的
# 只不过包可能有的版本上可能这个有那个没有,或者名字上有细小的区别。但是对于大多数情况开说不影响。
conda create -n <your_env_name> python=<required_version> 
pip install -r requirements.txt

或者

conda install --yes --file requirements.txt

删除环境

conda remove -n <your_env_name> --all

使用指定的conda环境

conda activate <your_env_name>

查看某个conda环境里安装的包

conda activate <your_env>
conda list

卸载某个包

conda uninstall xxx

或者

pip uninstall xxx

导出conda环境为yml文件

conda env export >  xxx.yml

导出conda环境/python环境为txt文件

pip freeze > requirements.txt 

或者

conda list -e > requirements.txt

如果文章对您有帮助,麻烦动动小手点个赞!非常感谢!

(base) C:\Users\26374>conda create -n labelimg python=3.9 -y Channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - defaults Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done ## Package Plan ## environment location: D:\Anaconda\envs\labelimg added / updated specs: - python=3.9 The following packages will be downloaded: package | build ---------------------------|----------------- bzip2-1.0.8 | h2466b09_7 54 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ce ca-certificates-2025.1.31 | h56e8100_0 155 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ce libffi-3.4.6 | h537db12_0 40 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ce liblzma-5.6.4 | h2466b09_0 102 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ce libsqlite-3.49.1 | h67fdade_1 1.0 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ce libzlib-1.3.1 | h2466b09_2 54 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ce openssl-3.4.1 | ha4e3fda_0 8.1 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ce pip-25.0.1 | pyh8b19718_0 1.2 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ce python-3.9.21 |h37870fc_1_cpython 16.2 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/e setuptools-75.8.2 | pyhff2d567_0 760 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ce tk-8.6.13 | h5226925_1 3.3 MB https://mirrors.tuna.tsinghua.edu.cn/ana
03-16
<think>好的,用户想要在conda创建一个名为labelimg的虚拟环境使用Python 3.9,但遇到了依赖包下载的问题。我需要先理清可能的解决步骤。首先,用户可能没有正确指定Python版本,或者依赖包之间的版本冲突。其次,conda的默认源可能没有某些包,或者下载速度慢导致超时。 接下来,我应该检查conda create命令的正确写法。正确的命令应该是conda create -n labelimg python=3.9,确保指定了正确的Python版本。然后,用户需要安装labelimg所需的依赖包,比如pyqt、lxml等。这些可能需要通过conda或者pip来安装,但有时候conda源中的包版本可能不兼容,这时候需要切换源或者使用pip。 另外,用户提到下载问题,可能需要检查网络连接,或者更换conda的镜像源,比如使用清华源或者中科大源,这能加速下载并减少问题。如果某些包在conda中不可用,可能需要使用pip安装,但要注意conda和pip混用可能引起的依赖冲突。这时候可以优先使用conda安装尽可能多的包,再用pip补充。 还有,用户的环境可能存在旧的包缓存,导致安装失败。可以尝试清理conda的缓存,使用conda clean -a命令。此外,确保conda本身是最新版本,更新conda后再试。如果所有方法都失败,可能需要手动下载包并安装,或者查看错误日志,寻找具体的依赖缺失信息,逐个解决。</think>在创建conda环境时遇到依赖包下载问题,可通过以下步骤排查和解决: $$conda\ create\ -n\ labelimg\ python=3.9$$ ### 一、基本环境创建 1. **指定精确版本** ```bash conda create -n labelimg python=3.9.16 # 建议使用精确补丁版本 ``` 若直接使用`python=3.9`可能匹配到不兼容的次版本,具体错误示例: ```log PackagesNotFoundError: The following packages are not available from current channels: [^1] ``` 2. **优先使用conda-forge** ```bash conda config --add channels conda-forge conda config --set channel_priority strict ``` ### 二、依赖包处理 1. **核心依赖清单** ```yaml dependencies: - python=3.9.16 - pip=23.1.2 - pyqt=5.15.7 - lxml=4.9.2 - pip: - labelimg~=1.8.6 ``` 2. **环境文件创建** ```bash # environment.yml name: labelimg channels: - conda-forge - defaults dependencies: - python=3.9.16 - pip=23.1.2 - pyqt=5.15.7 - lxml=4.9.2 - pip: - labelimg~=1.8.6 ``` ### 三、常见下载问题解决 1. **网络优化方案** ```bash conda config --set show_channel_urls yes conda clean -i # 清除索引缓存 # 替换清华源(二选一) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ ``` 2. **混合安装模式** ```bash conda install --yes --file requirements.txt --channel conda-forge pip install --no-cache-dir -r pip_requirements.txt ``` ### 四、验证安装 ```python # 激活环境后执行 import labelimg print(labelimg.__version__) # 应输出1.8.x ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小丫么小阿豪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值