高光谱图像使用kmean算法进行无监督分类

该文介绍了一种从光谱数据文件中读取和处理图像的方法。首先,利用envi库打开HDR和OS文件,然后使用memmap将大图片数据加载到内存中。接着,对特定区域的像素进行截取,并运用k-means算法进行聚类分析,最后展示聚类结果的图形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from spectral import *
import matplotlib.pyplot as plt

#读取文件,未加载到内存中,使用索引后再读取索引数据到内存中
data=envi.open(r"20230518123937/20230518123937.hdr",r"20230518123937/20230518123937.os")

#将整个图片数据加载到内存中,默认使用bip格式,即R-行,C-列,B-波段
bip=data.open_memmap()

#截取部分区域,第3001行到3300行和第1列到300列的区域
bip_pixels=bip[3000:3300,0:300,:]

#k近邻聚类,(图片数据,类别数,最大迭代次数)
(m, c) = kmeans(bip_pixels,5, 300000)
plt.figure()
for i in range(c.shape[0]):
    plt.plot(c[i])
plt.grid()
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值