【三变量联合分布copula】利用AIC BIC确定单变量最优拟合函数、AIC确定三变量联合最优copula函数,计算联合概率

💥1 概述

三变量联合分布函数copula 

1.利用AIC BIC确定单变量最优拟合函数

2.利用AIC确定三变量联合最优copula函数

3.计算联合概率

为了使用AIC(Akaike信息准则)和BIC(贝叶斯信息准则)确定单变量的最优拟合函数,并利用AIC确定三变量的最优copula函数,以下是一个详细的步骤指南:

步骤1:单变量最优拟合函数

1. **数据预处理**

    - 收集并清洗三变量数据集。

    - 对每个变量单独进行描述性统计分析,检查其分布类型。

2. **拟合不同的单变量分布**

    - 选择多个候选分布(如正态分布、对数正态分布、伽玛分布、指数分布等)。

    - 对每个变量分别拟合这些候选分布。

3. **计算AIC和BIC**

    - 计算每个候选分布的AIC和BIC值。

    - 选择AIC和BIC值最小的分布作为最优单变量拟合分布。

步骤2:三变量联合分布的copula选择

1. **构建copula模型**

    - 选择多个候选的copula函数(如Gaussian copula、t copula、Clayton copula、Gumbel copula等)。

    - 使用前面步骤确定的最优单变量分布进行边缘分布的标准化处理。

2. **拟合copula模型**

    - 对三变量数据进行copula模型的拟合。

    - 计算每个copula模型的AIC值。

3. **选择最优copula**

    - 选择AIC值最小的copula作为最优三变量联合分布模型。

在确定单变量最优拟合函数时,可以使用AIC(Akaike Information Criterion)或者BIC(Bayesian Information Criterion)来进行比较。这两种准则都是用来评估模型的拟合程度和复杂性,通过在不同模型之间进行比较来选择最佳模型。

对于三变量联合分布函数copula的选择,可以利用AIC来确定最优的copula函数。首先需要拟合各个边缘分布,然后通过copula函数将它们联系起来。在确定copula函数时,可以使用不同的copula家族(如Gaussian copula、t copula等)来进行比较,然后选择AIC值最小的copula函数作为最优模型。

在确定了最优的copula函数之后,就可以计算联合概率。通过联合分布函数copula,可以根据各个边缘分布以及copula函数来确定联合概率。具体计算方法可以根据所选的copula函数来进行相应的计算,以得到三个变量的联合概率。

在使用AIC(Akaike Information Criterion)和BIC(Bayesian Information Criterion)确定最优模型时,无论是单变量分布还是多变量Copula的选择,我们都是通过比较不同模型下的信息准则值来实现的。以下是该过程的简要指南,具体针对您的要求——确定单变量最优边际分布、三变量联合最优Copula函数,以及最终计算联合概率。

1. 单变量边际分布的确定

数据准备:首先,确保你有每个变量的数据集。

分布假设:对于每个变量,提出一系列可能的边际分布假设,比如正态分布、伽马分布、对数正态分布等。

参数估计与AIC/BIC计算:对于每个分布假设,使用数据估计其参数,并计算相应的AIC或BIC值。AIC和BIC公式分别为:[AIC = 2k - 2\ln(L)] 和 [BIC = k\ln(n) - 2\ln(L)],其中𝑘k是参数数量,𝐿L是最似然函数值,𝑛n是样本大小。AIC倾向于选择更复杂的模型,而BIC则倾向于惩罚复杂度更高的模型。

选择最佳分布:对于每个变量,选择AIC或BIC值最小的分布作为最优边际分布。

2. 三变量联合Copula函数的确定

Copula选择与参数估计:假设边际分布已经确定,接下来为三变量选择一系列Copula函数,如Gaussian Copula、t-Copula、Clayton Copula等。对于每种Copula,估计其参数并计算相应的联合分布函数。

计算AIC:类似于单变量分布,为每个Copula模型计算AIC或BIC值。这里需要注意,因为Copula函数涉及多变量,计算AIC或BIC时要考虑所有参数的总和。

确定最优Copula:选择三变量联合分布下AIC或BIC值最小的Copula作为最优模型。

3. 计算联合概率

生成均匀随机数:首先,利用均匀分布生成对应于三变量的随机数。

Copula反变换:将这些均匀随机数通过选定的最优Copula的反变换函数转换成对应于三变量边际分布的概率值。

计算联合概率:利用转换后的概率值和边际分布的累积分布函数(CDF),计算出三变量在特定点或区间上的联合概率。具体来说,如果边际CDFs为 𝐹1,𝐹2,𝐹3F1,F2,F3,而Copula反变换给出的联合概率为 𝐶(𝑢1,𝑢2,𝑢3)C(u1,u2,u3),那么三变量在点 (𝑥1,𝑥2,𝑥3)(x1,x2,x3) 的联合概率可以通过 𝐶(𝐹1(𝑥1),𝐹2(𝑥2),𝐹3(𝑥3))C(F1(x1),F2(x2),F3(x3)) 计算得出。

通过以上步骤,你可以系统地确定单变量的最优边际分布、三变量的最优联合Copula函数,并进而计算出所需的各种联合概率,用于进一步的分析或决策支持。

📚2 运行结果

部分代码:

%% 削减后的场景三维图subplot(1,3,1)bar3(P_wt')l2 = xlabel('t/h');set(l2, 'Fontname', 'Times New Roman', 'FontSize', 20)ylabel('场景编号');zlabel('风电出力');subplot(1,3,2)bar3(P_pv')l2 = xlabel('t/h');set(l2, 'Fontname', 'Times New Roman', 'FontSize', 20)ylabel('场景编号');zlabel('光伏出力');subplot(1,3,3)bar3(P_sum')l2 = xlabel('t/h');set(l2, 'Fontname', 'Times New Roman', 'FontSize', 20)ylabel('场景编号');zlabel('负荷');%% 各个场景的概率figure(3)bar(p)%ylim([0, 0.30]);xlabel('场景编号');ylabel('概率');set(gca, 'FontSize', 20)no = 1;figure(4)[ss,gg]=meshgrid(1:n_reduction,1:24);plot3(ss,gg,P_wt, 'linewidth', 2);title(['考虑相关性生成的风电出力', num2str(n_reduction), '个场景'])xlabel('场景'); ylabel('时刻');zlabel('风电出力值');set(gca,  'FontSize', 20)set(gca,'LineWidth',2); figure(5)[ss,gg]=meshgrid(1:n_reduction,1:24);plot3(ss,gg,P_pv, 'linewidth', 2);title(['考虑相关性生成的光伏出力', num2str(n_reduction), '个场景'])xlabel('场景'); ylabel('时刻');zlabel('光伏出力值');set(gca,  'FontSize', 20)set(gca,'LineWidth',2); figure(6)[ss,gg]=meshgrid(1:n_reduction,1:24);plot3(ss,gg,P_sum, 'linewidth', 2);title(['考虑相关性生成的负荷', num2str(n_reduction), '个场景'])xlabel('场景'); ylabel('时刻');zlabel('负荷值');set(gca,'FontSize', 20)set(gca,'LineWidth',2); figure(7)subplot(1,3,1)for i=1:10hold onh=cdfplot(P_wt(:,i));set(h,'LineStyle', '-', 'LineWidth',2)endtitle('');grid off;%h1=legend({'1','2','3','4','5','6','7','8','9','10'},'FontSize',16); %xlabel('Value','FontSize',16,'fontname','Times New Roman'); %legend('Location', 'Best'); %set(h1, 'Box', 'off');ylabel('Cumulative probability','FontSize',16,'fontname','Times New Roman');set(gca,'fontname','Times New Roman','FontWeight','bold','FontSize',20);set(gca,'LineWidth',1.5);subplot(1,3,2)for i=1:n_reductionhold onh=cdfplot(P_pv(:,i));set(h,'LineStyle', '-', 'LineWidth',2)endtitle('');grid off;%h1=legend({'1','2','3','4','5','6','7','8','9','10'},'FontSize',16); %xlabel('Value','FontSize',16,'fontname','Times New Roman'); %legend('Location', 'Best'); %set(h1, 'Box', 'off');%ylabel('Cumulative probability','FontSize',16,'fontname','Times New Roman');set(gca,'fontname','Times New Roman','FontWeight','bold','FontSize',20);set(gca,'LineWidth',1.5);subplot(1,3,3)for i=1:10hold onh=cdfplot(P_sum(:,i));set(h,'LineStyle', '-', 'LineWidth',2)endtitle('');grid off;h1=legend({'1','2','3','4','5','6','7','8','9','10'},'FontSize',16); %xlabel('Value','FontSize',16,'fontname','Times New Roman'); legend('Location', 'Best'); set(h1, 'Box', 'off');%ylabel('Cumulative probability','FontSize',16,'fontname','Times New Roman');set(gca,'fontname','Times New Roman','FontWeight','bold','FontSize',20);set(gca,'LineWidth',1.5);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]高远(Ayantobo,Olusola Olaitan).干旱指标和Copula函数在干旱事件多变量频率分析中的应用[D].西北农林科技大学,2018.

[2]赵继超,袁越,傅质馨,等.基于Copula理论的风光互补发电系统可靠性评估[J].电力自动化设备, 2013, 33(001):124-129.DOI:10.3969/j.issn.1006-6047.2013.01.024.

[3]段偲默,苗世洪,霍雪松,等.基于动态Copula的风光联合出力建模及动态相关性分析[J].电力系统保护与控制, 2019, 47(5):8.DOI:10.7667/PSPC180149.

[4]付婷婷,边俐争,李嫚,等.基于Copula理论的风光互补配网经济运行联合配网重构优化[J].可再生能源, 2023, 41(1):122-128.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值