约束满足问题(Constraint Satisfaction Problem, CSP)的Java实现(一)原理部分

本文介绍了约束满足问题(CSP)的Java实现原理,包括变量、可行域和不同类型的约束。重点讲解了预处理中的节点一致性与弧一致性,以及回溯搜索中的MRV排序和Degree Heuristic。后续还会涉及局部搜索、冲突直接回溯跳跃等高级技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

约束满足问题(Constraint Satisfaction Problem, CSP)的Java实现(一)原理部分

问题的定义

在这里插入图片描述
一个约束满足问题由三个部分组成,即 变量, 可行域, 约束。按照本人理解,变量为需要求解的量,可行域为变量中每个变量对应的可选择的值域,一般考虑为离散的问题。约束一般分为unary constraint, binary constraint,和多约束,但多约束也可以转换为binary constraint。
unary constraint:
T 1 ≠ d 1 T_1 \neq d_1 T1=d1
binary constraint:
T 1 + d 1 ≤ T 2 T_1 + d_1 \leq T_2 T1+d1T2
多约束:
T 1 + T 2 ≤ T 3 T_1 + T_2 \leq T_3 T1+T2T3

约束的预处理:Inference

Node consistency 节点相容

A single variable (corresponding to a node in the CSP network) is node-consistent if all the values in the variable’s domain satisfy the variable’s unary constraints. For example, in the variant of the Australia map-coloring problem (Figure 6.1) where South Australians dislike green, the variable SA starts with domain {red , green, blue}, and we can make it node consistent by eliminating green, leaving SA with the reduced domain {red , blue}.
即通过将变量可行域中,不满足单约束的值提前去掉。

Arc consistency 弧相容

A variable in a CSP is arc-consistent if every value in its domain satisfies the variable’s binary constraints. 对于 X i X_i Xi来说,如果其域中的每一个值 D i D_i Di,在 X j X_j Xj的域中都有一个值 D j D_j Dj能够满足其条件,则说明 X i X_i Xi X j X_j Xj是弧相容的。在预处理中,我们需要让所有点都弧相容,因此我们会检测每一段弧,并将不符合要求的domain剔除。如果最后有domain的大小为0,则说明问题无解。一般采用AC-3算法实现。
在这里插入图片描述

回溯搜索与变量排序

回溯搜索一般采用DFS配和剪枝进行。

MRV排序

Minimum-remaining-values (MRV) heuristic. It also has been called the “most constrained variable” or REMAINING-VALUES “fail-first” heuristic, the latter because it picks a variable that is most likely to cause a failure soon, thereby pruning the search tree. If some variable X has no legal values left, the MRV heuristic will select X and failure will be detected immediately—avoiding pointless searches through other variables. The MRV heuristic usually performs better than a random or static ordering, sometimes by a factor of 1,000 or more, although the results vary widely depending on the problem.
MRV选择具有最少可行值得变量进行排序,先用最少得,可以保证能够“快速失败”

Degree Heuristic排序

根据节点的度进行排序。选择度最多的节点,以使得其他更深节点的选择性变小。

conflict-directed backjumping

之后再详细展开讲

Local search

同样也之后展开讲。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值