视觉SLAM十四讲|【五】相机与IMU时间戳同步

本文详细介绍了视觉SLAM中的关键概念,包括相机与惯性测量单元(IMU)的时间戳同步方法,以及如何通过逆深度参数化处理相机成像方程中的运动和延迟效应。着重讨论了特征点在不同坐标系下的转换和重投影残差的计算,以及考虑时间延迟后的误差补偿过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

视觉SLAM十四讲|【五】相机与IMU时间戳同步

相机成像方程

Z [ u v 1 ] = [ f x 0 c x 0 f y c y 0 0 1 ] [ X Y Z ] = K P Z \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}= \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}= KP Z uv1 = fx000fy0cxcy1 XYZ =KP
其中,
K = [ f x 0 c x 0 f y c y 0 0 1 ] K=\begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} K= fx000fy0cxcy1

时间戳同步

假设视觉特征在图像平面上匀速移动,则特征在相机成像平面上的运动速度为
V l k = ( [ u l k + 1 v l k + 1 ] − [ u l k v l k ] ) / ( t k + 1 − t k ) V_l^k =( \begin{bmatrix} u_l^{k+1} \\ v_l^{k+1} \end{bmatrix} - \begin{bmatrix} u_l^{k} \\ v_l^{k} \end{bmatrix})/(t_{k+1}-t_k) Vlk=([ulk+1vlk+1][ulkvlk])/(tk+1tk)
设世界坐标系中 l l l个地图点坐标为
f l w = [ x , y , z ] T f_l^w = [x, y,z]^T flw=[x,y,z]T
变换到相机坐标系下则为
f l c i = R c b R w b i T ( f l w − p w b i ) + p c b f_l^{c_i} = R_{cb}R_{wb_i}^T(f_l^w - p_{wb_i}) + p_{cb} flci=RcbRwbiT(flwpwbi)+pcb再投影到图像平面,并计算重投影残差
r c = [ x l i z l i − u l i , y l i z l i − v l i ] T r_c = [\frac{x_l^i}{z_l^i}-u_l^i, \frac{y_l^i}{z_l^i}-v_l^i]^T rc=[zlixliuli,zliylivli]T
考虑时间延迟对特征坐标的补偿为
z l i ( t d ) = [ u l i , v l i ] T + t d v l i z_l^i(t_d) = [u_l^i, v_l^i]^T + t_d v_l^i zli(td)=[uli,vli]T+tdvli

逆深度参数化方式

SLAM中特征点的参数化表示有很多,最直接的是用三维坐标XYZ来表示,但通常大家更喜欢用逆深度表示,因为逆深度优势在于能够建模无穷远点。回顾相机成像方程
Z [ u v 1 ] = [ f x 0 c x 0 f y c y 0 0 1 ] [ X Y Z ] = K P Z \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}= \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}= KP Z uv1 = fx000fy0cxcy1 XYZ =KP

P = 1 λ K − 1 [ u v 1 ] P=\frac{1}{\lambda}K^{-1} \begin{bmatrix}u \\v \\ 1 \end{bmatrix} P=λ1K1 uv1
对于世界坐标系中的某相机观测点 f l c i f_l^{c_i} flci,可以用相机逆深度成像公式得到,如下所示
f l c i = 1 λ K − 1 [ u l i v l i 1 ] f_l^{c_i}=\frac{1}{\lambda}K^{-1} \begin{bmatrix}u_l^i \\v_l^i \\ 1 \end{bmatrix} flci=λ1K1 ulivli1
考虑到坐标系转换关系
f l w = R w c i f l c i + p w c i f_l^w = R_{wc_i}f_l^{c_i}+p_{wc_i} flw=Rwciflci+pwci
观测点 f l c i f_l^{c_i} flci也可以通过运动姿态进行推测,有
f l c i ~ = R c i w f l w + p c i w \tilde{{f_l^{c_i}}} = R_{c_iw}f_l^w+p_{c_iw} flci~=Rciwflw+pciw
我们研究的是投影面内的残差,因此,不考虑时间延迟的残差可以写为如下形式
r c 3 = [ u l j v l j 1 ] − λ K f l c j ~ r_{c3} = \begin{bmatrix} u_l^j\\ v_l^j \\1 \end{bmatrix} - \lambda K \tilde{{f_l^{c_j}}} rc3= uljvlj1 λKflcj~
r c 3 = [ u l j v l j 1 ] − λ K ( R c j w f l w + p c j w ) r_{c3} = \begin{bmatrix} u_l^j\\ v_l^j \\1 \end{bmatrix} - \lambda K(R_{c_jw}f_l^w + p_{c_jw}) rc3= uljvlj1 λK(Rcjwflw+pcjw)
r c 3 = [ u l j v l j 1 ] − λ K ( R c j w ( R w c i f l c i + p w c i ) + p c j w ) r_{c3} = \begin{bmatrix} u_l^j\\ v_l^j \\1 \end{bmatrix} - \lambda K(R_{c_jw}(R_{w c_i}f_l^{c_i}+p_{wc_i})+ p_{c_jw}) rc3= uljvlj1 λK(Rcjw(Rwciflci+pwci)+pcjw)
又因为
f l c i = 1 λ K − 1 [ u l i v l i 1 ] f_l^{c_i}=\frac{1}{\lambda}K^{-1} \begin{bmatrix}u_l^i \\v_l^i \\ 1 \end{bmatrix} flci=λ1K1 ulivli1
r c 3 = [ u l j v l j 1 ] − λ K ( R c j w ( R w c i ( 1 λ K − 1 [ u l i v l i 1 ] ) + p w c i ) + p c j w ) r_{c3} = \begin{bmatrix} u_l^j\\ v_l^j \\1 \end{bmatrix} - \lambda K(R_{c_jw}(R_{w c_i}(\frac{1}{\lambda}K^{-1} \begin{bmatrix}u_l^i \\v_l^i \\ 1 \end{bmatrix})+p_{wc_i})+ p_{c_jw}) rc3= uljvlj1 λK(Rcjw(Rwci(λ1K1 ulivli1 )+pwci)+pcjw)
[ u l j v l j ] = [ 1 0 0 0 1 0 ] [ u l j v l j 1 ] \begin{bmatrix} u_l^j\\ v_l^j \end{bmatrix} = \begin{bmatrix} 1 & 0 &0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} u_l^j\\ v_l^j \\1 \end{bmatrix} [uljvlj]=[100100] uljvlj1

C = [ 1 0 0 0 1 0 ] C = \begin{bmatrix} 1 & 0 &0 \\ 0 & 1 & 0 \end{bmatrix} C=[100100]

r c = C r c 3 r_c = C r_{c3} rc=Crc3
r c = C [ u l j v l j 1 ] − λ C K ( R c j w ( R w c i ( 1 λ K − 1 [ u l i v l i 1 ] ) + p w c i ) + p c j w ) r_{c} = C\begin{bmatrix} u_l^j\\ v_l^j \\1 \end{bmatrix} - \lambda CK(R_{c_jw}(R_{w c_i}(\frac{1}{\lambda}K^{-1} \begin{bmatrix}u_l^i \\v_l^i \\ 1 \end{bmatrix})+p_{wc_i})+ p_{c_jw}) rc=C uljvlj1 λCK(Rcjw(Rwci(λ1K1 ulivli1 )+pwci)+pcjw)
现在考虑时间延迟
r c = C ( [ u l j v l j 1 ] + v j t d ) − λ C K ( R c j w ( R w c i ( 1 λ K − 1 [ u l i v l i 1 ] ) + p w c i ) + p c j w ) r_{c} = C(\begin{bmatrix} u_l^j\\ v_l^j \\1 \end{bmatrix} + v_jt_d) - \lambda CK(R_{c_jw}(R_{w c_i}(\frac{1}{\lambda}K^{-1} \begin{bmatrix}u_l^i \\v_l^i \\ 1 \end{bmatrix})+p_{wc_i})+ p_{c_jw}) rc=C( uljvlj1 +vjtd)λCK(Rcjw(Rwci(λ1K1 ulivli1 )+pwci)+pcjw)
其中
v j = ( [ u k + 1 v k + 1 1 ] − [ u k v k 1 ] ) / ( t k + 1 − t k ) v_j =(\begin{bmatrix} u_{k+1} \\ v_{k+1} \\ 1\end{bmatrix} - \begin{bmatrix} u_{k} \\ v_{k} \\ 1\end{bmatrix})/(t_{k+1}-t_k) vj=( uk+1vk+11 ukvk1 )/(tk+1tk)

### 关于视觉SLAM 14第十三中的Kitti数据集教程 在《视觉SLAM十四》的第十三中,作者通过实际案例展示了如何构建一个简单的视觉SLAM系统,并使用KITTI数据集作为输入来验证系统的性能。以下是针对这一章节涉及的KITTI数据集的相关解释: #### KITTI数据集简介 KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集是一个广泛应用于计算机视觉自动驾驶领域的重要公开数据集[^3]。它提供了丰富的传感器数据,包括立体相机图像、激光雷达点云、GPS/IMU信息等。对于本章而言,重点在于利用其双目摄像头采集的图像序列来进行视觉SLAM的研究。 #### 使用KITTI数据集前的准备工作 为了能够顺利加载并处理来自KITTI的数据,在配置阶段需要完成如下操作: - 修改默认参数文件`default.yaml`内的字段`dataset_dir`至本地存储KITTI数据的具体位置[^4]。 例如设置成类似于这样的形式: ```yaml dataset_dir: /path/to/kitti/dataset/ ``` 此步确保程序可以找到对应的图片帧及其时间戳记录用于后续同步计算。 #### 正确启动应用程序的方法 当一切环境搭建完毕之后,应当返回项目根目录而非子文件夹如`/bin`去触发可执行脚本。具体命令如下所示[^5]: ```bash cd .. ./bin/run_kitti_stereo ``` 上述指令会调用预编译好的二进制文件以开启基于KITTI双目视频流上的实时定位映射流程。 #### 主要功能模块解析 整个框架围绕着几个关键组成部分展开运作,下面逐一阐述它们的作用机制: ##### 前端部分 负责从外界获取观测值进而估计当前时刻下的初始位姿猜测。通常采用ORB特征检测器匹配同名点对从而推导基础矩阵或者本质矩阵进一步恢复相对运动关系[^2]。 ##### 后端优化环节 鉴于仅依靠几何约束难以获得全局一致性的轨迹重建成果,因此引入非线性最小化求解策略调整所有节点间的连接权重直至收敛达到最优状态。值得注意的是这部分逻辑被封装在一个独立的工作单元以便按需激活减少资源消耗。 ##### 可视化展示层 借助OpenGL或其他图形库绘制三维空间的路标分布状况连同机器人行走路线共同呈现给用户直观感受算法表现优劣程度。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值