控制理论
文章平均质量分 86
影子鱼Alexios
有任何疑问欢迎提问
展开
-
视觉SLAM十四讲|【六】基于特征匀速模型的重投影误差计算形式
无时间戳延迟时,残差计算流程:世界坐标系中的第l个地图点变换到相机坐标系下为flwxyzT变换到相机坐标系下为flciRcbRwbiTflw−pwbipcb观察上式,易知转换的过程为先从世界坐标系转换到body坐标系,再从body坐标系转换到相机坐标系rcxlizli−uliylizli−vliTulivli。原创 2024-01-29 14:06:57 · 2818 阅读 · 0 评论 -
非线性系统【八】|线性系统的能观性与能控性
对于如下系统X˙AXBUYCX其中X为状态量,Y为观测量。原创 2024-01-23 11:26:51 · 2734 阅读 · 0 评论 -
视觉SLAM十四讲|【二】李群与李代数
设一个三维向量ϕt∈R3ϕt∈R3,有ϕt∧R˙tRtTϕt∧R˙tRtT注意,∧\land∧为矩阵化符号,得到一关于ϕ\phiϕ的反对称矩阵,因此该等式要求R˙tRtTR˙tRtT为反对称矩阵。原创 2023-12-25 17:07:04 · 3145 阅读 · 0 评论 -
机器人中的数值优化|【七】线性搜索牛顿共轭梯度法、可信域牛顿共轭梯度法
线性搜索牛顿-CG方法,也称为截断牛顿方法。最基础的Newton step是通过求解线性系统的方程。因此,一旦产生了一个负曲率的方向,我们就终止了CG迭代。然而,CG方法是用来求解正定系统的,当。不接近解时,hessian阵。原创 2023-09-27 23:13:22 · 2374 阅读 · 1 评论 -
机器人中的数值优化|【六】线性共轭梯度法,牛顿共轭梯度法
关于牛顿-共轭梯度法,笔者认为对其最直接和最根本的认识,这篇帖子写得特别好,可以参考東雲正樹的一文。原创 2023-09-27 19:14:20 · 2261 阅读 · 0 评论 -
机器人中的数值优化|【五】BFGS算法非凸/非光滑处理
在往期中我们对拟牛顿法以及BFGS等算法进行了详细的推导和学习,但是之前讨论的都为在保证函数凸且光滑的情况,那么如果函数非凸或者非光滑呢?我们在本节中进行一下研究。原创 2023-09-27 13:52:52 · 2297 阅读 · 0 评论 -
机器人中的数值优化|【四】L-BFGS理论推导与延伸
在上一节中我们对拟牛顿法进行了详细的推导,特别是对BFGS的推导过程比较熟悉了,我们发现BFGS虽然解决了牛顿法中hessian可能不存在以及hessian求逆计算复杂的通电,但是在大规模优化过程中,很可能没有办法去存储一个。矩阵,因此Limited memory GFGS算法自然而然就被提出,表示使用有限的空间来进行计算。个向量,然后每次迭代最近的结果即可计算出近似矩阵。来得到,LBFGS的思想是不再使用所有的。,避免显式保存矩阵信息。,而是通过使用最近的。原创 2023-09-26 22:30:45 · 2322 阅读 · 0 评论 -
机器人中的数值优化|【三】无约束优化,拟牛顿法,共轭梯度法理论与推导
在前面的章节中,我们学习了牛顿法,牛顿法的核心是先通过将函数泰勒展开,近似为一个二阶项目,对这个二阶项求导,可以得到极值点,则直接找到了在函数展开点附近的最优点。注意,我们这里说的是函数展开点附近的最优点。因为泰勒展开存在截断误差,我们是不能认为该点就是精确解的。下面是公式层面的一个推导。xminfx对x,我们于xt处(第t次迭代的x)位置进行二阶泰勒展开,有fx≈fxtf1xtx−xt21f2xtx−xt。原创 2023-09-24 23:50:49 · 2249 阅读 · 0 评论 -
非线性系统【七】|输入-输出稳定性
如果存在定义在0∞0∞上的KK类函数α\alphaα和非负常数β\betaβ,对于所有的u∈Lemu∈Lem和τ∈0∞τ∈0∞满足∣∣Huτ∣∣L≤α∣∣u∣∣Lβ∣∣Huτ∣∣L≤α∣∣u∣∣Lβ则映射Lem→LeqLem→Leq是稳定的。如果存在非负常数γ\gammaγ和β\betaβ,对于所有的u∈Lemu。原创 2023-03-15 15:50:01 · 2576 阅读 · 0 评论 -
非线性系统【五】|线性时变系统和线性化,逆定理
由线性时变系统x˙tAtxt,使用状态转移矩阵进行描述,有xtΦtt0xt0。原创 2023-03-14 16:09:59 · 2438 阅读 · 0 评论 -
非线性系统【四】|比较函数,非自治系统
对于连续函数β0α×0∞→0∞β0α×0∞→0∞如果对于每个固定的s,映射βrs\beta(r,s)βrs都是关于r的κ\kappaκ函数,并且对于每个固定的r,映射βrs\beta(r,s)βrs是s的递减函数,且当s趋近于无穷时κ\kappaκ趋近于0,则β\betaβ属于KLKL函数。原创 2023-03-14 14:27:40 · 2151 阅读 · 0 评论 -
机器人中的数值优化|【一】数值优化基础
本文通过探讨机器人中的数值优化方法,研究包含各种凸优化的理论和数值优化方法。令X是线性空间。如果对于X的子集S中的所有x和y,并且在区间 [0,1]中的所有t,点(1−t)x+ty也属于S,则S称为凸集。原创 2023-01-03 16:29:46 · 1339 阅读 · 2 评论 -
非线性系统【三】LaSalle不变原理
非线性系统【三】LaSalle不变原理引理4.1如果方程x˙=f(x)\dot{x}=f(x)x˙=f(x)的解x(t)x(t)x(t)有界,且当t≥0t\ge0t≥0时属于DDD,那么其正极限集L+L^+L+是非空不变紧集,且当t→∞t\rightarrow \infint→∞时,x(t)x(t)x(t)趋近于L+L^+L+定理4.4 LaSalle定理设Ω⊂D\Omega\subset DΩ⊂D是方程的一个正不变紧集。设V:D→RV:D\rightarrow RV:D→R是连续可微函数,在Ω\O原创 2021-09-30 14:31:32 · 2182 阅读 · 0 评论 -
非线性系统【二】Lyapunov稳定性
非线性系统【二】Lyapunov稳定性定义4.1对于平衡方x˙=f(x)\dot{x}=f(x)x˙=f(x)的平衡点x=0x=0x=0如果对于每个ϵ>0\epsilon >0ϵ>0都存在δ=δ(ϵ)\delta=\delta(\epsilon)δ=δ(ϵ),且满足∣∣x(0)∣∣<δ→∣∣x(t)∣∣<ϵ,∀t≥0||x(0)||<\delta \rightarrow ||x(t)||<\epsilon,\forall t\ge0∣∣x(0)∣∣&原创 2021-09-30 14:04:42 · 1006 阅读 · 0 评论 -
非线性系统【一】基本性质
非线性系统【一】基本性质存在性和唯一性对于一个初值问题:x˙=f(x,y),x(t0)=x0\dot{x}=f(x,y), x(t_0)=x_0x˙=f(x,y),x(t0)=x0定理3 局部存在性和唯一性设f(t,x)f(t,x)f(t,x)对ttt分段连续,且满足Lipscitz条件:∣∣f(t,x)−f(t,y)∣∣≤L∣∣x−y∣∣||f(t,x)-f(t,y)||\le L||x-y||∣∣f(t,x)−f(t,y)∣∣≤L∣∣x−y∣∣∀x,y∈B={x∈Rn∣∥x−x原创 2021-09-29 13:48:11 · 469 阅读 · 0 评论 -
现代控制理论(一)
现代控制理论(一)系统的描述内部描述外部描述状态变量:足已完全表征系统运动状态的最小个数的一组变量称为状态变量。状态向量:如果把N个状态变量用适量形式表示,并把这些状态变量看作是矢量的分量,则就把这些成为状态向量(简称状态)状态空间:状态向量取值的空间,即以状态变量各个向量所构成的n维空间成为状态空间。状态方程:每个状态变量的一阶导数与所有状态变量和输入变量的数学方程称之为状态方程。...原创 2020-03-03 12:06:30 · 810 阅读 · 0 评论