最简单的方法为自己的Windows电脑装Tensorflow-gpu2.X版本的深度学习环境(以Windows10+4090+cuda11.2+Python3.9为例)

1.前言:现在做深度学习的朋友们往往都需要同时掌握pytorch和tensorflow两种深度学习框架,一般科研领域还是用pytorch多一些,当时工程上tensorflow的用户也不容小觑,这就导致github上许多优秀的项目都是基于tensorflow的,并且一些优秀的开源项目也是基于这个深度学习框架的。但是1.x版本的tensorflow和2.x版本的tensorflow的安装方法不同,前者需要安装英伟达编译的tensorflow版本,这里我们主要介绍2.x版本的tensorflow版本,这个更新,更快。

2.安装教程

tensorflow1.x版本的安装教程,这里我也推荐两个资源,如有需要,请查阅高算力显卡安装1.x版本的tensorflow

 好的,接下来进入主题,安装Tensorflow-gpu2.X版本的深度学习环境。

2.1 首先是基础环境的准备:需要到anaconda官网下载anaconda软件并且安装,具体的安装步骤很简单,请看我的另一篇推送的开始部分安装anaconda的教程,记得手动添加那些环境变量。

2.2 建立针对该版本的虚拟环境:每个人在学习DL的过程中会碰到很多各种各样的环境,如果全部都在base环境中实现,那基本上是不可能的事(环境依赖库数量特别庞大且容易版本冲突,这是Python的通病,容易版本冲突导致bug),所以必须为每个不同的项目建立不同的虚拟环境,它们之间彼此独立不会互相干扰。关于虚拟环境的建立,请看我这篇推送的第二部分更换国内下载源以及建立虚拟环境

部分朋友可能没有梯子,所以更换国内的下载源是有必要的,查看当前源的命令行:

pip config get global.index-url

建议更换为清华的,用下来感觉更稳定,命令为:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

创建虚拟环境环境的命令行为:

conda create -n your_name jupyter notebook python==3.9

上述的your_name可以替换为你想要的任何名字,但得是英文,比如(Tensorflow_env)。jupyter notebook 代表安装jupyter notebook库,这方便后续在vscode中使用jupyter进行代码运行,一般建议同时安装,方便可视化代码运行。python==3.9代表指定安装Python3.9版本。

运行该命令行后,会让你选择y/n,你输入y回车就可以

2.3 安装cuda和cudnn:找到NVIDIA控制面板->帮助->系统信息->组件看一下CUDA版本,我的12.2是目前最新的,一般向下兼容。

打开tensorflow官网,查看不同版本的tensorflow和cudnn,cuda的版本适配情况

这里cuda的最高版本只更新到了11.2, tensorflow_gpu的最高版本也只更新到了2.6.0,所以大家

可以初步选择安装最新的tensorflow-gpu2.6.0+python3.9+CUDA11.2+cuDNN8.1套餐

接下来比较重要的一步就是先用conda search找找当前源下的CUDA与cuDNN有没有我们要的版本,如果没有对应包或者版本的话可以试试换镜像源,换几个总会有的。命令行为:

conda search cuda

初步结果显示,在清华镜像源里,目前cuda的最低版本是11.3 

我们切换成中科大镜像试试,结果也是如此,此外还尝试了阿里云和豆瓣,最低也均是11.3

此外,我们在清华镜像源中搜索cudnn

conda search cudnn

这里我提供一种在4090显卡上可靠的搭配: tensorflow-gpu2.10.1+python3.9+CUDA11.3+

cuDNN8.2.1,这个配置实测是没有问题的。

解答一个疑问,为什么这里要查看当前镜像源中拥有的cuda和cudnn 的版本,因为下面我们要安装这两个库(需要匹配),进入虚拟环境,安装cudatoolkit和cudnn:

activate your_env_name
conda install cudatoolkit=11.3.0
conda install cudnn=8.2.1

下载tensorflow_gpu2.10.1

pip install tensorflow-gpu==2.10.1

安装部分必要库

pip install protobuf
pip install numpy
pip install scikit-learn
pip install matplotlib

好了,到此为止,tensorflow_gpu2.10.1深度学习环境就配置完成了,你可以用以下代码来检验是否安装成功:

import tensorflow as tf
import sys

# 检查是否有可用的 GPU
gpus = tf.config.list_physical_devices('GPU')
if gpus:
    print("GPUs are available")
else:
    print("No GPUs found")
# 输出 TensorFlow 版本
print("TensorFlow version:", tf.__version__)
# 输出 Python 版本
print("Python version:", sys.version)

<think>好的,用户现在问的是TensorFlowTensorFlow-GPU的区别,以及相关信息。我需要先回忆之前的历史对话,用户之前遇到了ImportError,使用的是TensorFlow 1.15,现在可能对版本差异和GPU支持不太清楚。 首先,用户可能想知道这两个包的区别,应该解释清楚两者的不同,尤其是在版本GPU支持上的变化。记得要提到TensorFlow 2.x之后的情况,因为用户之前用的是1.15,可能不了解新版本的变化。 然后,需要分点详细说明两者的区别,包括历史背景、安装方式、适用场景等。还要注意在TensorFlow 2.x之后,tensorflowtensorflow-gpu已经合并,避免用户混淆。可能需要强调版本兼容性,比如CUDA和cuDNN的版本问题,这对使用GPU的用户来说很重要。 接下来,用户可能需要安装指南,所以给出具体的安装命令,包括不同版本子,比如1.15和2.x。同时提醒他们检查GPU驱动和依赖库,这部分用户可能在之前的错误中已经遇到问题,所以需要详细说明验证步骤,比如使用tf.test.is_gpu_available()。 还要考虑到用户可能的常见问题,比如安装GPU不可用的情况,需要列出可能的原因和解决方法,比如检查CUDA版本环境变量等。此外,推荐建议部分应该根据用户需求,比如高性能需求推荐GPU版本,或者轻量需求用CPU版本。 最后,总结两者的区别和适用场景,确保用户能根据自身情况选择。需要保持回答结构清晰,分步骤说明,帮助用户逐步理解和解决问题。同时保持语言简洁,避免技术术语过多,让不同层次的用户都能理解。</think>### TensorFlowTensorFlow-GPU 的区别与使用指南 --- #### **1. 核心区别** - **TensorFlow(CPU 版本)** 默认支持 CPU 计算,无需 GPU 硬件,适合轻量级任务或没有 GPU 的设备。 - **TensorFlow-GPU** 支持 GPU 加速计算,利用 NVIDIA GPUCUDA 和 cuDNN 库提升训练/推理速度,适合大规模深度学习任务。 --- #### **2. 历史背景与版本变化** - **TensorFlow 1.x 时代** - `tensorflow` 包仅支持 CPU。 - `tensorflow-gpu` 是独立的 GPU 版本包,需单独安装- 两者**不可共存**,安装时会互相覆盖。 - **TensorFlow 2.x 时代** - 从 **TensorFlow 2.1** 开始,官方将 CPU 和 GPU 支持合并到 `tensorflow` 包中。 - 安装 `tensorflow` 时,若检测到兼容的 GPU 环境,自动启用 GPU 加速。 - `tensorflow-gpu` 包**已废弃**,不再需要单独安装--- #### **3. 安装与兼容性** ##### **TensorFlow 1.x 的安装** - **CPU 版本** ```bash pip install tensorflow==1.15 ``` - **GPU 版本** ```bash pip install tensorflow-gpu==1.15 ``` ##### **TensorFlow 2.x 的安装** - 直接安装 `tensorflow`,自动支持 GPU(需配置驱动): ```bash pip install tensorflow ``` --- #### **4. GPU 支持的先决条件** 若需使用 GPU 加速,需满足以下条件: 1. **硬件要求** - NVIDIA GPU(支持 CUDA 计算能力 ≥ 3.5)。 2. **软件依赖** - **CUDA 工具包**(版本需匹配 TensorFlow 要求,如 TF 2.10 需要 CUDA 11.2)。 - **cuDNN 库**(版本需与 CUDA 匹配,如 TF 2.10 需要 cuDNN 8.1)。 - **NVIDIA 显卡驱动**(版本 ≥ 450.x)。 3. **验证 GPU 是否启用** ```python import tensorflow as tf print(tf.test.is_gpu_available()) # 输出 True 表示 GPU 可用 ``` --- #### **5. 常见问题与解决** - **安装GPU 不可用?** 1. 检查 CUDA/cuDNN 版本是否与 TensorFlow 版本匹配([官方文档](https://www.tensorflow.org/install/source#gpu))。 2. 确认 `PATH` 和 `LD_LIBRARY_PATH` 环境变量包含 CUDA 库路径。 3. 卸载冲突包(如旧版 `tensorflow-gpu`)。 - **如何强制使用 CPU?** ```python import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # 禁用 GPU ``` --- #### **6. 推荐选择** - **使用 TensorFlow 2.x**: - 直接安装 `tensorflow`,无需区分 CPU/GPU 包。 - 默认优先调用 GPU(若可用),否则自动回退到 CPU。 - **坚持使用 TensorFlow 1.x**: - 根据硬件选择 `tensorflow`(CPU)或 `tensorflow-gpu`(GPU)。 --- #### **总结** | 特性 | TensorFlow(CPU) | TensorFlow-GPU(旧版) | TensorFlow 2.x(合并版) | |---------------------|--------------------------|---------------------------|--------------------------| | **硬件依赖** | 无 GPU | 需 NVIDIA GPU | 自动适配 CPU/GPU | | **性能** | 较慢 | 快(依赖 GPU 算力) | 自动优化 | | **安装复杂度** | 简单 | 需配置 CUDA/cuDNN | 简单(GPU 需额外配置驱动)| 根据需求选择: - **快速实验/无 GPU** → 安装 CPU 版。 - **大规模训练/有 GPU** → 安装 TensorFlow 2.x 并配置 GPU 环境
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Trouville01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值