Leetcode 72 编辑距离【动态规划】

Leetcode 72 编辑距离

困难题
属于动态规划中的字符串编辑问题;
这一类方法一般是定义一个二维数组,i表示处理到第一个序列的第i个元素为止,j表示处理到第二个序列的第j个元素为止的最佳匹配。

题目

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

示例1

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse ('h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例2

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention ('i' 替换为 'e')
enention -> exention ('n' 替换为 'x')
exention -> exection ('n' 替换为 'c')
exection -> execution (插入 'u')

提示

  • 0 <= word1.length, word2.length <= 500
  • word1 和 word2 由小写英文字母组成

解法

  • 定义一个二维数组,i表示处理到第一个序列的第i个元素为止,j表示处理到第二个序列的第j个元素为止,编辑字符串使其相同的最少操作数。
  • 状态转移方程
    • 如果第i个元素和第j个元素是相同(该字符可匹配),那么只需要考虑前面的字符串匹配的最少次数;也就是 d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] dp[i][j]=dp[i-1][j-1] dp[i][j]=dp[i1][j1]

    • 如果元素不同,那么就通过修改/插入/删除,使得对应位置元素相同从而向前考虑,那么可以考虑三种情况:

      • 修改字符串元素(i or j)使得其对应位置上的元素相同 d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 dp[i][j]=dp[i-1][j-1]+1 dp[i][j]=dp[i1][j1]+1
      • 对第一个序列的 i 位置做插入操作(相当于对第二个序列的 j 位置做删除操作)使得对应位置元素相同 d p [ i ] [ j ] = d p [ i ] [ j − 1 ] + 1 dp[i][j]=dp[i][j-1]+1 dp[i][j]=dp[i][j1]+1
      • 对第二个序列的 j 位置做插入操作(相当于对第一个序列的 i 位置做删除操作)使得对应位置元素相同 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + 1 dp[i][j]=dp[i-1][j]+1 dp[i][j]=dp[i1][j]+1

      找上述三种情况最优解也就是 d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j − 1 ] , d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j ] ) + 1 dp[i][j]= min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j])+1 dp[i][j]=min(dp[i1][j1],dp[i][j1],dp[i1][j])+1

  • dp数组的初始化:定义dp的维度为m+1,n+1(m,n是第一,二个序列的长度)相当于添加了两个空字符串,那么对于i=0,或者j=0时,需要删除/插入,j或者i次;
  • 遍历顺序,从dp数组的左上角遍历到右下角;
  • 返回 d p [ m ] [ n ] dp[m][n] dp[m][n]即可
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m,n = len(word1),len(word2)
        dp = [[0 for _ in range(n+1)] for _ in range(m+1)]
        for i in range(m+1):
            for j in range(n+1):
                if i==0: dp[i][j] = j
                elif j==0: dp[i][j] = i
                elif word1[i-1]==word2[j-1]: dp[i][j] = dp[i-1][j-1]
                else: dp[i][j] = min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j])+1
        return dp[m][n]

  • 时间复杂度 O(mn)
  • 空间复杂度 O(mn)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值