知识图谱的自顶向下和自低向上

知识图谱构建方式

自顶向下

在这里插入图片描述
先进行规则定义,后将数据填充到所构建的模式层

  • 本体构建。构建知识图谱的模式层.从最顶层的概念开始构建顶层本体, 然后细化概念和关系, 形成结构良好的概念层次树.需要利用一些数据源提取本体, 即本体学习。
  • 实体学习。将知识抽取得到的实体匹配填充到所构建的模式层本体中.

自底向上

在这里插入图片描述

  1. 先从开放的多源数据中提取知识图谱的实体、关系、属性等要素,可以利用人工智能、深度学习等技术进行实体抽取、关系抽取和属性抽取。
  2. 然后进行知识融合,消除实体、关系、属性等指称项与事实对象之间的歧义, 使不同来源的知识能够得到规范化整合. 知识融合分为:
    (1)实体对齐: 可用于判断相同或不同数据集中的多个实体是否指向客观世界同一实体, 解决一个实体对应多个名称的问题.
    (2)属性值填充:针对同一属性出现不同值的情况, 根据数据源的数量和可靠度进行决策, 给出较为准确的属性值.
  3. 最后进行知识加工,对已构建好的数据层进行概念抽象,即构建知识图谱的模式层. 知识加工包括本体构建和质量评估.基于本体形成的知识库不仅层次结构较强,并且冗余程度较小. 由于技术的限制, 得到的知识元素可能存在错误, 因此在将知识加入知识库以前, 需要有一个评估过程. 通过对已有知识的可信度进行量化, 保留置信度高的知识来确保知识库的准确性.

自顶向下和自底向上结合

  1. 首先, 在知识抽取的基础上归纳构建模式层, 之后可对新到的知识和数据进行归纳总结, 从而迭代更新模式层,并基于更新后的模式层进行新一轮的实体填充. 如百度知识图谱, 就是利用内外部以及用户数据采用混合方法构建所得。
  2. 自顶向下法较好体现概念间层次, 但人工依赖性强、模式层更新受限, 仅适用于数据量小的知识图谱构建;自底向上法更新快、支持大数据量的知识图谱构建, 但知识噪音大、准确性不高; 混合方法灵活性强, 但模式层构建难度大。
### 构建知识图谱的方法 构建知识图谱可以采用两种主要方法:自底向上自顶向下[^2]。这两种方法各有优缺点,适用于不同类型的需求。 #### 自底向上的构建方法 这种方法通常从现有的数据出发,逐步建立实体及其关系。适合于已有大量具体实例的情况,能够快速形成初步的知识体系并不断扩展完善。 #### 自顶向下的构建方式 此途径先定义好领域内的概念框架、分类体系等高层次结构再填充具体内容;这种方式有助于确保整体架构的一致性逻辑严谨性,在规划初期就明确了目标范围与边界条件。 ### 构建知识图谱的具体步骤 构建过程大致分为以下几个阶段: #### 数据采集 收集来自多个渠道的相关资料作为原始素材,这些可能涵盖但不限于文本文件、数据库记录或是网页抓取的内容等。对于电子商务场景而言,则会涉及到商品详情页描述、顾客反馈意见乃至历史订单明细等诸多方面[^4]。 #### 数据预处理 对所获信息执行必要的清理工作——去除噪声干扰项(如HTML标签)、统一表达形式(日期格式标准化),以及解决缺失值问题等等。此外还需完成特征提取任务以便后续操作能顺利开展。 #### 实体识别与链接 通过自然语言处理技术自动标注出文档里提及的人物名、地点名称或其他专有名词类别对象,并尝试匹配至权威参照系内既存条目实现关联绑定;如果找不到对应项则考虑新增节点入库保存待日后补充更多信息辅助确认身份属性。 #### 关系抽取 运用机器学习算法挖掘事物间潜在联系模式,比如因果效应链条、隶属层次关系或者是协同合作搭档角色配对等形式。这一环节往往依赖于精心设计的模板规则集配合统计概率模型共同作用达成目的。 #### 知识融合 当面临多源异构型态各异的数据集合时,需借助映射表对照转换机制消除歧义冲突之处,力求达到全局视角下最优化整合效果。同时也要注意维护版本迭代更新过程中前后一致性原则不受破坏。 #### 知识推理 最后一步便是基于现有积累成果展开演绎归纳分析活动,推导得出未曾显式记载的新见解认知结论。这不仅限于简单三段论式的直接推出,更涉及复杂网络拓扑特性探索研究层面。 ```python from transformers import pipeline, AutoTokenizer, TFAutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER") model = TFAutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") nlp = pipeline("ner", model=model, tokenizer=tokenizer) text = "Hugging Face Inc. is a company based in New York City." print(nlp(text)) ``` 上述代码展示了如何使用 HuggingFace 的 `transformers` 库来进行命名实体识别的任务,这是构建知识图谱中实体识别的一个重要组成部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值