如何通过OAuth2.0完成Microsoft平台登录验证

参考内容:

OAuth2 in Python | TestDriven.io

代表用户获取访问权限 - Microsoft Graph | Microsoft Learn

OAuth 2.0 Bearer Token Usage

首先需要了解的是,通过Microsoft平台做身份验证,有一些配置时拿到的参数不可或缺(在身份验证的步骤中会用到,不一定是同一个步骤用到),其中包括:

  • client_id:应用程序id

  • client_secret:应用程序密钥

  • authority:

微软提供的authority形如https://login.microsoftonline.com/Enter_the_Tenant_Name_Here,Tenant_Name是租户id,在配置微软账号的时候会给出,是使用者一开始就会已知的参数

    ### NVIDIA GPU 性能对比评测 #### 计性能评估标准 为了全面评估NVIDIA GPU的计,通常会关注FP32、FP16以及INT8三种精度下的浮点运效率。这些数据能够反映GPU在执行不同类型的任务时的表现情况[^1]。 #### 特定型号间的比较 当考虑具体产品线时,例如RTX 2080相较于前代GTX 1080,在架构改进的基础上实现了显著提升;而更高端的产品像A100相比V100不仅增加了CUDA核心数量,还引入了第三代Tensor Core支持BFLOAT16格式加速机器学习应用。对于最新一代Hopper架构下的H100,则进一步增强了内存带宽至惊人的9TB/s级别,并且提供了更高的张量操作吞吐率。 ```python # 假设有一个函数可以获取指定GPU的信息 def get_gpu_info(gpu_name): gpus = { "GTX1080": {"fp32_performance": 9.0, "memory_bandwidth": 320}, "RTX2080": {"fp32_performance": 14.2, "memory_bandwidth": 341}, "V100": {"fp32_performance": 15.7, "memory_bandwidth": 900}, "A100": {"fp32_performance": 19.5, "memory_bandwidth": 1555}, "H100": {"fp32_performance": 67, "memory_bandwidth": 9000} } return gpus.get(gpu_name) print(f"GTX1080 FP32 Performance: {get_gpu_info('GTX1080')['fp32_performance']} TFLOPS") print(f"H100 Memory Bandwidth: {get_gpu_info('H100')['memory_bandwidth']} GB/s") ``` #### 开源工具辅助测评 利用开源项目如GPU Benchmarks可以帮助开发者深入了解所选设备的具体特性及其实际应用场景中的效能表现。这类资源为用户提供了一个直观的方式去衡量不同世代间的技术进步幅度[^3]。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    一只野生的桔子

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值