关键点检测的heatmap介绍

开始学关键点检测的时候,到处找找不到heatmap的解释。现在大概有些懂了,干脆自己写一个。部分转载。

关键点定位任务两种做法:heatmap和fully connected回归(Heapmap-based和Regression-Based)

heatmap得到一张类似热力图的东西,回归直接得到关键点坐标。

从定位的原理上看
Heatmap和Regression两种方法差异是很大的:

  • Heatmap方法实际上是在空间维度上做特征匹配,是卷积核在特征图平面上“滑动”,更多地关注和利用的是局部信息,而定位实际上是特征匹配的“副产品”,是我们通过求响应最大点索引(Argmax)的方式获得的,相对来说,每一个关键点的计算是独立的。(可理解为拿一个卷积核去挨个算,看每一个局部是否符合关键点的特征,计算出的响应越大,越有可能是关键点)
  • Regression方法则不同,所有的关键点计算是同时完成的,共享了同一份特征信息。(可理解为把所有特征信息输入一个全连接层,直接计算出坐标。)

heatmap(热图),如下图,可以理解成热感图。越是符合标准的位置,颜色越亮。
在这里插入图片描述
这里给出一种热图上像素点的计算方法:
假设真实坐标点 / 标注是 μ = ( μ x , μ y ) \mu = (\mu_x ,\mu_y) μ=(μx

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值