论文阅读“Partially view-aligned representation learning with noise-robust contrastive loss“(CVPR2021)

论文标题

Partially view-aligned representation learning with noise-robust contrastive loss

论文作者、链接

作者:Yang, Mouxing and Li, Yunfan and Huang, Zhenyu and Liu, Zitao and Hu, Peng and Peng, Xi

链接:CVPR 2021 Open Access Repository

代码:https://github.com/XLearning-SCU/2021-CVPR-MvCLN


Introduction逻辑(论文动机&现有工作存在的问题)

多视图表征学习Multi-view Representation Learning (MvRL),目的是从多视图数据中学习到恒定的特征表示——现有的方法往往有两个依赖:数据视图的一致性完备性,少了其中一个条件,多视图表征学习就失效了——但是现实情况下这两个条件往往在数据收集和传输时导致不成立——于是,问题转化为了部分数据丢失问题Partially Data-missing Problem (PDP)和部分视图对齐问题Partially View-aligned Problem (PVP)

本文笔尝试在没有标签的情况下解决PVP问题——理想情况下,数据是对齐的——简单解法是直接使用匈牙利算法 (Hungarian algorithm)对视图进行预处理,构建两个视图的相关视图——匈牙利算法存在的缺点:(1)不能应用在多视图的行空间(2)没有利用到数据之间的相关性——部分对齐视图聚类(Partially View-aligned Clustering ,PVC)提出了一种可微神经模块的匈牙利算法,从而可以实现数据对齐和表示学习在一个阶段的方式——但是这两种算法目标都是实例级的对齐,这可能导致多视图聚类和分类过拟合——层级对齐比实例级对齐的需求更高——对于交叉视图的实例,对齐正确的概率有1/N或者1/K(实例级和类别级),即,类别级对齐的概率更高(K<<N)

基于上面的观察,本文解决PVP问题通过:类别级的对齐而不是实例级的对齐,如图1(c)所示。提出了Multi-view Contrastive Learning with Noise-robust loss (MvCLN)算法,基本思想是将视图对齐问题重新解释为一种识别任务,即,以双视图数据为例,对于一个视图中的每个样本,MvCLN旨在从另一个视图中识别属于同一类别的对应对象——样本对的构建:将对齐的数据视为正对,使用随机抽样构造负对(NP)——为了减轻甚至消除假阴性的样本对,设计了抗噪音的对比损失noise-robust contrastive loss

论文核心创新点

(1)提出了聚类似的一对多映射任务,提出了通过层级对齐而不是实例对齐来解决PVP问题。

(2)将对齐问题重新解释为视图辨别问题,通过一个对比学习模型来解决这个问题。

(3)通过建立视图之间的相关性来设计对比损失,提出了抗噪音的对比损失。传统的带噪声标签被定义为对分类等监督任务的不正确标注。相反,这项工作提出的观点对应可能是错误的,这与传统的定义有显著的不同。


相关工作

多视图特征学习

对比学习

含噪音的标签学习


论文方法

Problem Formulation问题公式化

\left\{\mathbf{X}^{i}\right\}_{i=1}^{v}=\left\{\mathbf{x}_{1}^{i}, \mathbf{x}_{2}^{i}, \ldots, \mathbf{x}_{N}^{i}\right\}_{i=1}^{v}为一个部分视图对齐的数据集,即\left\{\mathbf{X}^{i}\right\}_{i=1}^{v}=\left\{\mathbf{A}^{i}, \mathbf{U}^{i}\right\}_{i=1}^{v},其中v代表视图的数量,对齐和非对齐的视图分别记作\left\{\mathbf{A}^{i}\right\}_{i=1}^{v}=\left\{\mathbf{a}_{1}^{i}, \mathbf{a}_{2}^{i}, \ldots, \mathbf{a}_{N_{1}}^{i}\right\}_{i=1}^{v}\left\{\mathbf{U}^{i}\right\}_{i=1}^{v}=\left\{\mathbf{u}_{1}^{i}, \mathbf{u}_{2}^{i}, \ldots, \mathbf{u}_{N_{2}}^{i}\right\}_{i=1}^{v}。目标是利用对齐视图\left\{\mathbf{A}^{i}\right\}_{i=1}^{v}来对齐非对齐视图\left\{\mathbf{U}^{i}\right\}_{i=1}^{v},并同时对整个数据集学习一个共同的特征表达。

v=2举例,当\bold{x}^1_k\bold{x}^2_k属于同一个类时,该数据集是对齐的,即:

 其中,C(x)代表x所属的类别。于是,类别级的对齐问题,就变成了解决一个识别问题,即使得\bold{x}^1_k\bold{x}^2_k满足上述公式。

 为了完成识别任务,类别级的对比学习的目标变成增大正样本对的相似性,同时减小负样本对的相似性。但是,对比学习不能直接用于识别任务。一方面,已经包含了正样本对\left\{\mathbf{A}^{i}\right\}_{i=1}^{v},于是剩下的问题是如何构造构造负样本对。另一方面,在没有标签数据的帮助下,不可避免的会得到一些含有噪音的负样本对。因此,本文提出使用随机采样的方法生成负样本对。具体来说,从\left\{\mathbf{A}^{i}\right\}_{i=1}^{v}随机选择两个样本\text{a}^1_i\text{a}^2_j,当i \neq j的时候,作为负样本对。直觉上来说,构建样本对的时候有1/K的概率是含噪音的样本对,当类别数是不均匀的时候。因此,目标是使对比学习对噪声标签(即假阴性)具有鲁棒性。

 Noise-robust Contrastive Loss 噪音鲁棒对比损失

为了减轻假阴性的影响,提出如下损失函数:

 其中N是数据对的数量,P=0/1代表正/负样本对。

对于正样本交叉视图\text{a}^1_i\text{a}^2_j,目标是最小化它们俩之间的距离,即

 f_1,f_2代表两个参数化的神经网络,将两个视图映射到潜在空间

为避免琐碎解,又加入了以下这一项:

 其中,m是一个阈值,使得负样本直之间的距离比较大,\left(\mathbf{a}_{i}^{1}, \mathbf{a}_{j}^{2}\right)是负样本对。由于上述损失没有明确包含对噪声标签的鲁棒性,它会混淆真阴性和假阴性,从而导致性能下降。为了增加对假阴性的鲁棒性,提出以下损失:

 其中m是一个阈值,只在初始化阶段计算,通过以下公式:

 其中N_p,N_n分别是正样本和负样本的数量。公式6可以使得模型避免对假阴性样本对形成过拟合。

Analysis on the Proposed Loss对提出的损失函数的分析

计算\mathcal{L}^{neg}的梯度d,即,负样本的距离变成0,只考虑d\leq m,即:

 然后d=m/3或者是d=m。性能分为两个区域,即,0<d<m/3m/3<d<m。对关于负样本的上述损失,进行可视化如下:

 从图中可以观察到,比起简单版的损失,对噪音有鲁棒性的损失,不会单调地增加负对的距离,从而具有以下两个特点:

(1)反向优化(0<d<m/3):对于那些坐落在孔区域的负样本对,本文提出的损失函数的梯度会反向,因此负样本对的距离会减少。

(2)慢优化(m/3<d<m):对于落在m/3<d<m区域的样本,优化速度会比简单损失的速度要慢,因为梯度总是和负值相关的,并且公式中前者的梯度总是比后者的大,即:

 如果假阴性被约束为0<d<m/3,第一个特征可以用来消除假阴性的影响。交替地,第二项可以通过将假阴性约束到m/3<d<m来减轻假阴性的影响。于是,问题就变成了如何将假阴性和真阴性样本对区分开来。

Bengio et al通过经验发现,神经网络容易首先适应简单的模式,这为我们提供了动机。具体来说,本文提出了一个TNP,可以被视为一种简单的模式,然后FNP是一种比较复杂的模式。因此,我们有理由推测,具有简单对比损失的神经网络比FNP更快地适应TNP,如下图

 更具体地说,从图中可以看出,由于TNP拟合速度更快,在训练早期TNP和FNP vanilla之间存在差距。

基于上述观察,我们提出采用两阶段优化策略来区分FNP和TNP基于上述观察。即,第一阶段应用简单对比损失去优化模型,到一个所有负样本对的平均距离比m要大。结果是,由于TNP的拟合速度快,大多数TNP和FNP会落入d>md<m的区域。随后,模型就到了第二阶段,对噪音鲁棒的对比损失进行优化,这个阶段中,大多数FNP会落在m/3<d<m或者是0<d<m/3,FNP的距离不会上升或者下降的太快,因此可以减轻甚至消除含噪音标签的影响。同时,它只对真正的负对产生微不足道的影响,因为到目前为止它们的大部分距离都大于m


消融实验设计

提出的对噪音鲁棒的对比损失

正负样本对的比例

对齐比列的影响

两个阶段的交替时间

一句话总结

论文好句摘抄(个人向)

(1)However, both the vanilla Hungarian algorithm and PVC aim to achieve instance-level alignment which might be over-suffificient to multi-view clustering and classifification.

(2)Without loss of generality, we take v = 2 as a showcase

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Multi-agent reinforcement learning (MARL) is a subfield of reinforcement learning (RL) that involves multiple agents learning simultaneously in a shared environment. MARL has been studied for several decades, but recent advances in deep learning and computational power have led to significant progress in the field. The development of MARL can be divided into several key stages: 1. Early approaches: In the early days, MARL algorithms were based on game theory and heuristic methods. These approaches were limited in their ability to handle complex environments or large numbers of agents. 2. Independent Learners: The Independent Learners (IL) algorithm was proposed in the 1990s, which allowed agents to learn independently while interacting with a shared environment. This approach was successful in simple environments but often led to convergence issues in more complex scenarios. 3. Decentralized Partially Observable Markov Decision Process (Dec-POMDP): The Dec-POMDP framework was introduced to address the challenges of coordinating multiple agents in a decentralized manner. This approach models the environment as a Partially Observable Markov Decision Process (POMDP), which allows agents to reason about the beliefs and actions of other agents. 4. Deep MARL: The development of deep learning techniques, such as deep neural networks, has enabled the use of MARL in more complex environments. Deep MARL algorithms, such as Deep Q-Networks (DQN) and Deep Deterministic Policy Gradient (DDPG), have achieved state-of-the-art performance in many applications. 5. Multi-Agent Actor-Critic (MAAC): MAAC is a recent algorithm that combines the advantages of policy-based and value-based methods. MAAC uses an actor-critic architecture to learn decentralized policies and value functions for each agent, while also incorporating a centralized critic to estimate the global value function. Overall, the development of MARL has been driven by the need to address the challenges of coordinating multiple agents in complex environments. While there is still much to be learned in this field, recent advancements in deep learning and reinforcement learning have opened up new possibilities for developing more effective MARL algorithms.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值