【数学】仿射变换

本文深入浅出地探讨了高中水平的仿射变换,特别是y轴伸缩,如何将椭圆从x²/a² + y²/b² = 1转换回标准形式。讲解了坐标系变化对直线、斜率、弦长等的影响,并应用到椭圆切线、垂径定理等几何性质的证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

∣   降   维   打   击     Nightguard   Series.   ∣ \begin{vmatrix}\Huge{\textsf{ 降 维 打 击 }}\\\texttt{ Nightguard Series. }\end{vmatrix}       Nightguard Series. 


注:本文讨论的仿射变换仅为y轴上的伸缩变换,且难度在高中生理解范围内 \scriptsize\textbf{注:本文讨论的仿射变换仅为y轴上的伸缩变换,且难度在高中生理解范围内} 注:本文讨论的仿射变换仅为y轴上的伸缩变换,且难度在高中生理解范围内

众所周知椭圆是一个压扁的圆(?

在这里插入图片描述
达成成就:用GGB乱涂乱画

于是你发现原本的圆 x 2 + y 2 = a 2 x^2+y^2=a^2 x2+y2=a2

变成了 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1

众所周知圆的题目比较好做,椭圆的题目比较不好做(一大瓶颈在于几何方法)

那我们就把椭圆拉回去

把椭圆“拉回去”的操作,本质上是 y y y 轴上单位的变换:将 y y y 轴上单位变为原来的 b a \frac{b}{a} ab 且保持椭圆形状不变,则在新坐标系下, 椭圆的椭圆上任意一点 ( x , y ) (x,y) (x,y) 对应点为 ( x , y ′ ) (x,y') (x,y),且满足 y ′ = a b y y'=\frac{a}{b}y y=bay

(也可以理解为将每一个点纵坐标乘上一个倍数)

代入原椭圆方程得 x 2 a 2 + b 2 a 2 y ′ 2 b 2 = 1 \frac{x^2}{a^2}+\frac{\frac{b^2}{a^2}y'^2}{b^2}=1 a2x2+b2a2b2y′2=1,即 x 2 + y ′ 2 = a 2 . x^2+y'^2=a^2. x2+y′2=a2.

(一)坐标系变换以后,平面内所有的点坐标都发生变化,相关的一些量也随之 变化

  1. 任意一点坐标: ( x , y ) ⟶ ( x , a b y ) (x,y)\longrightarrow(x,\frac{a}{b}y) (x,y)(x,bay)
  2. 直线方程: A x + B y + C = 0 ⟶ A x + a B b y + C = 0 Ax+By+C=0\longrightarrow Ax+\frac{aB}{b}y+C=0 Ax+By+C=0Ax+baBy+C=0
  3. 斜率: k ⟶ a b k ( k ′ = Δ y ′ Δ x = a Δ y b Δ x = a b k ) k\longrightarrow \frac{a}{b}k\quad(k'=\frac{\Delta y'}{\Delta x}=\frac{a\Delta y}{b\Delta x}=\frac{a}{b}k) kbak(k=ΔxΔy=bΔxaΔy=bak)
  4. 弦长: l ′ = 1 + k ′ 2 ∣ x 1 − x 2 ∣ = 1 + ( a b k ) 2 ∣ x 1 − x 2 ∣ l'=\sqrt{1+k'^2}|x_1-x_2|=\sqrt{1+(\frac{a}{b}k)^2}|x_1-x_2| l=1+k′2 x1x2=1+(bak)2 x1x2
  5. 面积: S ⟶ a b S S\longrightarrow \frac{a}{b}S SbaS (不会积分 感性理解)

以及角度,垂直,菱形,三角形内心,线段长度,向量的数量积等会发生变化。

(二)也有一些东西 不发生变化 ,它们被称为 仿射不变量

  1. 直线的平行、相交、共点
  2. 三角形的中线和重心
  3. 向量的平行四边形法则
  4. 线段的 n n n 等分点 (常考的是中点)
  5. 直线与曲线位置关系(切点变化后仍为切点)
  6. 特定的两线段之比(平行/斜率互为相反数/斜率不存在/在同一条直线上)
  7. 两封闭图形的面积之比

一些常用的结论可以用仿射变换的方法快速证明:

请添加图片描述

♣ 1. \clubsuit 1. ♣1. 椭圆在 A A A 处切线为 l l l A A A 不为顶点),则 k l ⋅ k O A = − b 2 a 2 k_l \cdot k_{OA}=-\frac{b^2}{a^2} klkOA=a2b2

证明:由于 A A A 不为顶点,所以 l , O A l,OA l,OA 斜率存在

众所周知在圆中切线与半径垂直,即 k l ′ ⋅ k O A ′ = − 1 k_l'\cdot k_{OA}'=-1 klkOA=1

由 (一).3 得

a b k l ⋅ a b k O A = − 1 \frac{a}{b} k_l\cdot \frac{a}{b}k_{OA}=-1 baklbakOA=1

k l ⋅ k O A = − b 2 a 2 . k_l \cdot k_{OA}=-\frac{b^2}{a^2}. klkOA=a2b2.

在这里插入图片描述

♣ 2. \clubsuit 2. ♣2. A B AB AB 为椭圆的一条弦, A B AB AB 中点为 M M M ,则 k A B ⋅ k O M = − b 2 a 2 k_{AB} \cdot k_{OM}=-\frac{b^2}{a^2} kABkOM=a2b2 (椭圆中的“垂径定理”)

证明:众所周知圆中垂径定理成立,即 k A B ′ ⋅ k O M ′ = − 1 k_{AB}'\cdot k_{OM}'=-1 kABkOM=1

同理可证。

请添加图片描述

♣ 3. \clubsuit 3. ♣3. 椭圆的一条弦 A B AB AB 过原点,椭圆上除 A , B A,B A,B 以外任取一点 P P P,则 k P A ⋅ k P B = − b 2 a 2 k_{PA}\cdot k_{PB}=-\frac{b^2}{a^2} kPAkPB=a2b2

证明:众所周知在圆中,直径所对的圆周角为直角,即 P A ⊥ P B PA \perp PB PAPB

k P A ′ ⋅ k P B ′ = − 1 k_{PA}' \cdot k_{PB}'=-1 kPAkPB=1

同理可证。

♣ 4. \clubsuit 4. ♣4. 椭圆的切线方程

x 2 + y 2 = a 2 x^2+y^2=a^2 x2+y2=a2 的切线方程 x 0 x + y 0 ′ y ′ = a 2 x_0x+y_0'y'=a^2 x0x+y0y=a2

代入 y = a b y ′ y=\frac{a}{b}y' y=bay

x 0 x + y 0 y ⋅ a 2 b 2 = a 2 x_0x+y_0y \cdot \frac{a^2}{b^2}=a^2 x0x+y0yb2a2=a2

x 0 x a 2 + y 0 y b 2 = 1. \frac{x_0x}{a^2}+ \frac{y_0y}{b^2}=1. a2x0x+b2y0y=1.


接下来是一些不常见结论

♠ 5. \spadesuit 5. ♠5. 椭圆中的圆幂定理

在此之前可以先复习一下圆中的 圆幂定理

首先,定义一条直线的“方向半径”,为过原点与直线平行的椭圆的弦的一半,记为 r A B r_{AB} rAB(为了方便接下来的证明)请添加图片描述
如图, O C OC OC 即为直线 A B AB AB 的方向半径。


请添加图片描述

“相交弦定理”: P A ⋅ P B P C ⋅ P D = r A B 2 r C D 2 \frac{PA\cdot PB}{PC \cdot PD}=\frac{r_{AB}^2}{r_{CD}^2} PCPDPAPB=rCD2rAB2

证明:众所周知在圆中 P ′ A ′ ⋅ P ′ B ′ P ′ C ′ ⋅ P ′ D ′ = 1 \frac{P'A'\cdot P'B'}{P'C' \cdot P'D'}=1 PCPDPAPB=1

由 (二).6 得 P ′ A ′ P A = O ′ E ′ O E , P ′ C ′ P C = O ′ F ′ O F \frac{P'A'}{PA}=\frac{O'E'}{OE},\frac{P'C'}{PC}=\frac{O'F'}{OF} PAPA=OEOE,PCPC=OFOF P B , P D PB,PD PB,PD 同理)

且圆的半径相等,即 O ′ E ′ = O ′ F ′ O'E'=O'F' OE=OF

代入即证。

“(切)割线定理”“切线长定理”同理可证,结论如下:

请添加图片描述

P A ⋅ P B P C ⋅ P D = r A B 2 r C D 2 \frac{PA\cdot PB}{PC \cdot PD}=\frac{r_{AB}^2}{r_{CD}^2} PCPDPAPB=rCD2rAB2

请添加图片描述
P A 2 P C 2 = r A B 2 r C D 2 \frac{PA^2}{PC^2}=\frac{r_{AB}^2}{r_{CD}^2} PC2PA2=rCD2rAB2

(切割线定理和切线长定理可以看作割线定理的特殊情况)

(可以顺便看看补充资料[2][3],是对圆幂定理更本质的理解)

(然而。实际上这些东西压根没用过)

(更新 2022.11.29 竟然神奇地用了一次

(其他证法见补充资料[4])

♠ 6. \spadesuit 6. ♠6. 过原点的两直线满足 k O A ⋅ k O B = − b 2 a 2 , k_{OA}\cdot k_{OB}=-\frac{b^2}{a^2}, kOAkOB=a2b2, S △ O A B S_{\triangle OAB} SOAB 为定值 1 2 a b . \frac{1}{2}ab. 21ab.

证明:对应圆中 k O A ′ ⋅ k O B ′ = a b k O A ⋅ a b k O B = − 1 k_{OA'}\cdot k_{OB'}=\frac{a}{b}k_{OA}\cdot \frac{a}{b}k_{OB}=-1 kOAkOB=bakOAbakOB=1

O A ′ ⊥ O B ′ , S △ O A ′ B ′ = 1 2 a 2 OA' \perp OB',S_{\triangle OA'B'}=\frac{1}{2}a^2 OAOB,SOAB=21a2

由(一).5 得 S △ O A B = 1 2 a b S_{\triangle OAB}=\frac{1}{2}ab SOAB=21ab

(此题其他方法计算量真的很恐怖 (。﹏。*) 更多扩展以后有机会就写)

其他忘了 想起来再写

参考:https://www.bilibili.com/video/BV1dP4y1c7Ro

补充资料:[1]https://www.bilibili.com/video/BV1ys411472E

[2]https://zhuanlan.zhihu.com/p/354954745

[3]https://wenku.baidu.com/view/985542de443610661ed9ad51f01dc281e43a5636.html

[4]https://www.bilibili.com/read/cv18484645

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值