🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。
集合
- 定义
集合是具有某种特定性质的事物的总体.
构成这个集合的事物称为集合的元素.
- 分类
由有限多个元素组成的集合称为有限集.
由无穷多个元素组成的集合称为无限集.
- 常见的几种集合
R表示全体实数构成的集合.
Q表示全体有理数构成的集合.
Z表示全体整数构成的集合.
N表示全体自然数构成的集合.
- 集合的运算
①若集合A中的每一个元素都是集合B中的元素,则称A是B的子集,记为 A ⊆ B A \subseteq B A⊆B.
②不含任何元素的集合称为空集. 记为 ∅ \varnothing ∅.
③若 A ⊆ B A \subseteq B A⊆B且 B ⊆ A B \subseteq A B⊆A,则称A与B相等.
①交集:设A和B是两个集合,把由既属于A又属于B的元素组成的集合称为A与B的交集,记为 A ∩ B A \cap B A∩B.
②并集:把由A中所有的元素和B中所有的元素组成的集合称为A与B的并集,记为 A ∪ B A \cup B A∪B.
③差集:由所有属于A而不属于B的元素组成的集合称为A与B的差集,记为 A \ B ( 或 A − B ) . A \backslash B(或A-B). A\B(或A−B).
④全集:通常把讨论限制在某一集合U的一个子集范围内,这样的集合U称为全集.
⑤补集:设A是全集U的一个子集,由U中所有不属于A的元素组成的集合称为A的补集,记为 A ˉ 或 A c \bar{A }或A^{c} Aˉ或Ac.
区间
- 定义
区间是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
- 分类
设 ∀ a , b ∈ R , 且 a < b \forall a,b\in R, 且a<b ∀a,b∈R,且a<b, 则区间可以分为以下几种:
- 开区间: ( a , b ) = { x ∣ a < x < b , x ∈ R } (a,b)=\{x|a<x<b, x\in R\} (a,b)={x∣a<x<b,x∈R}
- 闭区间: [ a , b ] = { x ∣ a ≤ x ≤ b , x ∈ R } [a,b]=\{x|a\leq x\leq b, x\in R\} [a,b]={x∣a≤x≤b,x∈R}
- 左开右闭区间: ( a , b ] = { x ∣ a < x ≤ b , x ∈ R } (a,b]=\{x|a< x\leq b, x\in R\} (a,b]={x∣a<x≤b,x∈R}
- 左闭右开区间:
[
a
,
b
)
=
{
x
∣
a
≤
x
<
b
,
x
∈
R
}
[a,b)=\{x|a\leq x< b, x\in R\}
[a,b)={x∣a≤x<b,x∈R}
上述区间称为有限区间,它们的区间长度是有限的, a a a和 b b b称为区间的端点.
引入符号 + ∞ +\infty +∞(读作正无穷大)和 − ∞ -\infty −∞(读作负无穷大),给出以下几类无限区间: - [ a , + ∞ ) = { x ∣ x ≥ a , x ∈ R } [a,+\infty)=\{x|x\geq a, x\in R\} [a,+∞)={x∣x≥a,x∈R}
- ( − ∞ , b ] = { x ∣ x ≤ b , x ∈ R } (-\infty,b]=\{x|x\leq b, x\in R\} (−∞,b]={x∣x≤b,x∈R}
- ( − ∞ , + ∞ ) = { x ∣ x ∈ R } (-\infty,+\infty)=\{x| x\in R\} (−∞,+∞)={x∣x∈R}
邻域
- 定义
邻域是一种常见的集合. 设 a ∈ R , δ > 0 a\in R,\delta >0 a∈R,δ>0, 所有以点 a a a 为中心的开区间都称为 a a a 的邻域.
- 分类
- 点
a
a
a 的
δ
\delta
δ 邻域:集合
{
x
∣
∣
x
−
a
∣
<
δ
}
\{x| ~~|x-a|< \delta\}
{x∣ ∣x−a∣<δ}称为点
a
a
a 的
δ
\delta
δ 邻域,记为
U
(
a
,
δ
)
U(a,\delta)
U(a,δ).
U ( a , δ ) = { x ∣ ∣ x − a ∣ < δ } = { x ∣ a − δ < x < a + δ } = ( a − δ , a + δ ) U(a,\delta)=\{x| ~~|x-a|< \delta\}=\{x| ~~a- \delta<x<a+\delta\}=(a- \delta,a+\delta) U(a,δ)={x∣ ∣x−a∣<δ}={x∣ a−δ<x<a+δ}=(a−δ,a+δ) - 点
a
a
a 的去心
δ
\delta
δ 邻域:把邻域的中心去掉,得到的集合
{
x
∣
0
<
∣
x
−
a
∣
<
δ
}
\{x| ~~0<|x-a|< \delta\}
{x∣ 0<∣x−a∣<δ}称为点
a
a
a 的去心
δ
\delta
δ 邻域. 记为
U
˚
(
a
,
δ
)
\mathring {U} (a,\delta)
U˚(a,δ).
U ˚ ( a , δ ) = { x ∣ 0 < ∣ x − a ∣ < δ } = { x ∣ a − δ < x < a ∪ a < x < a + δ } \mathring {U} (a,\delta)=\{x| ~~0<|x-a|< \delta\}=\{x| ~~a- \delta<x< a \cup a<x<a+ \delta\} U˚(a,δ)={x∣ 0<∣x−a∣<δ}={x∣ a−δ<x<a∪a<x<a+δ}.
函数
- 定义
设 x x x和 y y y是两个变量, D D D是一个给定的非空实数集,如果对于每一个实数 x ∈ D x\in D x∈D,按照某个对应法则 f f f,总有唯一确定的 y y y值与之对应,则称 y y y是关于 x x x的函数,记为 y = f ( x ) y=f(x) y=f(x).
这里 x x x为自变量, y y y为因变量. 因变量 y y y与自变量 x x x之间的这种依赖关系称为函数关系.
注1:
函数三要素:定义域、值域、对应关系
①定义域:自变量
x
x
x的取值范围
D
D
D称为函数的定义域. 记为
D
f
D_{f}
Df.
②值域:因变量的取值集合称为函数的值域. 记为
R
f
R_{f}
Rf或
f
(
D
)
f(D)
f(D),即
R
f
=
f
(
D
)
=
{
y
∣
y
=
f
(
x
)
,
x
∈
D
}
R_{f}=f(D)=\{y| y=f(x), x\in D\}
Rf=f(D)={y∣y=f(x),x∈D}.
③对应关系:
f
f
f :
x
⟶
f
(
x
)
x \longrightarrow f(x)
x⟶f(x).
注2:
几个特殊函数:
①常值函数
y
=
C
y=C
y=C(
C
C
C为常数),定义域:
R
\bm R
R,值域:
{
C
}
\{C\}
{C}.
②绝对值函数
y
=
∣
x
∣
y=|x|
y=∣x∣,定义域:
R
\bm R
R,值域:
[
0
,
+
∞
)
[0,+\infty)
[0,+∞).
③符号函数
y
=
s
g
n
x
{
1
,
x
>
0
0
,
x
=
0
−
1
,
x
<
0
\begin{align} y=sgnx\left\{ \begin{aligned} 1 , ~~~x>0 \\ 0, ~~~x=0\\ -1,~~~x<0 \end{aligned} \right. \end{align}
y=sgnx⎩
⎨
⎧1, x>00, x=0−1, x<0
定义域:
R
\bm R
R,值域:
{
−
1
,
0
,
1
}
\{-1,0,1\}
{−1,0,1}.
④取整函数
y
=
[
x
]
y=[x]
y=[x],其中
[
x
]
[x]
[x]表示不超过
x
x
x的最大整数. 定义域:
R
\bm R
R,值域:
Z
\bm Z
Z
⑤狄利克雷函数
D
(
x
)
=
{
1
,
x
∈
Q
0
,
x
∈
Q
c
\begin{align} D(x)=\left\{ \begin{aligned} 1 , ~~~x&\in Q \\ 0, ~~~x&\in Q^{c}\\ \end{aligned} \right. \end{align}
D(x)={1, x0, x∈Q∈Qc
定义域:
R
\bm R
R,值域:
{
0
,
1
}
\{0,1\}
{0,1}.
⑥分段函数:自变量在其定义域的不同变化范围内,对应法则为不同的函数.
例如函数
y
=
f
(
x
)
{
x
+
1
,
x
<
2
x
2
,
x
≥
2
\begin{align} y=f(x)\left\{ \begin{aligned} &x+1 , ~~~x<2 \\ &x^{2}, ~~~~~~~~x\geq2\\ \end{aligned} \right. \end{align}
y=f(x){x+1, x<2x2, x≥2
- 性质
- 函数的有界性
①设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,数集 X ⊆ D X \subseteq D X⊆D,如果存在常数 M 1 M_{1} M1,对于任一 x ∈ X x \in X x∈X 都有 f ( x ) ≤ M 1 f(x) \leq M_{1} f(x)≤M1,则称函数 y = f ( x ) y=f(x) y=f(x)在 X X X 上有上界.
②设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,数集 X ⊆ D X \subseteq D X⊆D,如果存在常数 M 2 M_{2} M2,对于任一 x ∈ X x \in X x∈X 都有 f ( x ) ≥ M 2 f(x) \geq M_{2} f(x)≥M2,则称函数 y = f ( x ) y=f(x) y=f(x)在 X X X 上有下界.
③如果函数 y = f ( x ) y=f(x) y=f(x) 在 X X X 上既有上界又有下界,则称 y = f ( x ) y=f(x) y=f(x) 在 X X X 上 有界.
也可按下面定义函数有界/无界:
设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,数集 X ⊆ D X \subseteq D X⊆D,若存在 M > 0 M>0 M>0,对于任一 x ∈ X x \in X x∈X 都有 ∣ f ( x ) ∣ ≤ M |f(x)| \leq M ∣f(x)∣≤M,则称函数 y = f ( x ) y=f(x) y=f(x)在 X X X 上有界. 若这样的 M M M 不存在,则称函数 y = f ( x ) y=f(x) y=f(x)在 D D D 上无界. 即如果对于任何正数 M M M,总存在 x 0 ∈ D x_{0} \in D x0∈D,使得 ∣ f ( x 0 ) ∣ > M |f(x_{0})| > M ∣f(x0)∣>M,那么函数 y = f ( x ) y=f(x) y=f(x)在 D D D上无界.
注:
①上界和下界有无数多个.
~~~~~~~
②
M
M
M 的取值有无数多个.
- 函数的单调性
设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,区间 I ⊆ D I \subseteq D I⊆D. 如果对于区间 I I I上任意两点 x 1 x_{1} x1和 x 2 x_{2} x2:
当 x 1 < x 2 x_{1}<x_{2} x1<x2 时,恒有 f ( x 1 ) ≤ f ( x 2 ) f(x_{1})\leq f(x_{2}) f(x1)≤f(x2),则称函数 f ( x ) f(x) f(x)在区间 I I I上是单调递增的. 若将 f ( x 1 ) ≤ f ( x 2 ) f(x_{1})\leq f(x_{2}) f(x1)≤f(x2) 改为 f ( x 1 ) < f ( x 2 ) f(x_{1})< f(x_{2}) f(x1)<f(x2),则称函数 f ( x ) f(x) f(x)在区间 I I I上是严格单调递增.
当 x 1 < x 2 x_{1}<x_{2} x1<x2 时,恒有 f ( x 1 ) ≥ f ( x 2 ) f(x_{1})\geq f(x_{2}) f(x1)≥f(x2),则称函数 f ( x ) f(x) f(x)在区间 I I I上是单调递减的. 若将 f ( x 1 ) ≥ f ( x 2 ) f(x_{1})\geq f(x_{2}) f(x1)≥f(x2) 改为 f ( x 1 ) > f ( x 2 ) f(x_{1})> f(x_{2}) f(x1)>f(x2),则称函数 f ( x ) f(x) f(x)在区间 I I I上是严格单调递减.
- 函数的奇偶性
设函数 y = f ( x ) y=f(x) y=f(x)的定义域 D D D 关于原点对称,即当 x ∈ D x \in D x∈D时, − x ∈ D -x \in D −x∈D.
如果对于任一 x ∈ D x \in D x∈D,有 f ( − x ) = f ( x ) f(-x)=f(x) f(−x)=f(x),则称 f ( x ) f(x) f(x)为偶函数. 偶函数的图形关于 y y y轴对称.
如果对于任一 x ∈ D x \in D x∈D,有 f ( − x ) = − f ( x ) f(-x)=-f(x) f(−x)=−f(x),则称 f ( x ) f(x) f(x)为奇函数. 奇函数的图形关于 原点对称.
- 函数的周期性
设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,如果存在一个非零常数 T T T ,使得对于任一 x ∈ D x \in D x∈D,有 x + T ∈ D x+T \in D x+T∈D,且关系式 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x) 成立,则称函数 f ( x ) f(x) f(x) 是以 T T T 为周期的周期函数. T T T的整数倍也是 f ( x ) f(x) f(x)的周期.
能使 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x) 成立的最小正数 T T T 称为周期函数 f ( x ) f(x) f(x)的最小正周期. 通常所说的周期指函数的最小正周期.
注:
并不是所有的周期函数都有最小正周期. 例如常值函数,狄利克雷函数.
- 几种函数
- 反函数
设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D f D_{f} Df,值域为 R f R_{f} Rf. 如果对于 R f R_{f} Rf中的每一个 y y y, 都可以由关系式 y = f ( x ) y=f(x) y=f(x)确定唯一的 x x x ( x ∈ D f x \in D_{f} x∈Df)与之对应,这样就确定了一个以 y y y为自变量的函数,称这个函数是 y = f ( x ) y=f(x) y=f(x)的反函数,记为 x = f − 1 ( y ) x=f^{-1}(y) x=f−1(y),其定义域为 R f R_{f} Rf,值域为 D f D_{f} Df.
注:
①反函数
y
=
f
−
1
(
x
)
y=f^{-1}(x)
y=f−1(x)与原函数
y
=
f
(
x
)
y=f(x)
y=f(x)具有相同的单调性.
~~~~~~~~
②原函数
y
=
f
(
x
)
y=f(x)
y=f(x)与反函数
y
=
f
−
1
(
x
)
y=f^{-1}(x)
y=f−1(x)的图形关于直线
y
=
x
y=x
y=x对称.
- 复合函数
设函数 y = f ( u ) y=f(u) y=f(u)的定义域为 D f D_{f} Df,函数 u = g ( x ) u=g(x) u=g(x) 的定义域为 D g D_{g} Dg,若存在某区域 D 1 ⊆ D g D_{1} \subseteq D_{g} D1⊆Dg ,使得 u = g ( x ) u=g(x) u=g(x) 的对应值域 R g ⊆ D f R_{g} \subseteq D_{f} Rg⊆Df ,则由它们构成的下列函数
y = f [ g ( x ) ] , x ⊆ D 1 \begin{align} y=f[g(x)],~~x\subseteq D_{1} \end{align} y=f[g(x)], x⊆D1
称为由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)构成的 复合函数,它的定义域是 D 1 D_{1} D1 , u u u称为中间变量.
注:
①复合函数可推广到有限多个复合函数复合的情形.
~~~~~~~~
②构成复合函数的条件
R
g
⊆
D
f
R_{g} \subseteq D_{f}
Rg⊆Df 不能少.
- 初等函数
(1)基本初等函数
基本初等函数主要有以下几种:
- 幂函数 : y = x μ ( μ ∈ R ) y=x^{\mu}(\mu \in \bm R) y=xμ(μ∈R)
- 指数函数: y = a x ( a > 0 且 a ≠ 1 ) y=a^{x}(a>0且a\neq 1) y=ax(a>0且a=1)
- 对数函数: y = l o g a x ( a > 0 且 a ≠ 1 ) y=log_{a}x(a>0且a\neq 1) y=logax(a>0且a=1)
- 三角函数: y = s i n x , y = c o s x , y = t a n x , y = c o t x , y = s e c x , y = c s c x y=sinx, y=cosx, y=tanx, y=cotx, y=secx, y=cscx y=sinx,y=cosx,y=tanx,y=cotx,y=secx,y=cscx
- 反三角函数: y = a r c s i n x , y = a r c c o s x , y = a r c t a n x , y = a r c c o t x y=arcsinx, y=arccosx, y=arctanx, y=arccotx y=arcsinx,y=arccosx,y=arctanx,y=arccotx
(2)初等函数
- 由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.