1.1 集合与函数

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。

集合

  1. 定义

集合是具有某种特定性质的事物的总体.
构成这个集合的事物称为集合的元素.

  1. 分类

由有限多个元素组成的集合称为有限集.
由无穷多个元素组成的集合称为无限集.

  1. 常见的几种集合

R表示全体实数构成的集合.
Q表示全体有理数构成的集合.
Z表示全体整数构成的集合.
N表示全体自然数构成的集合.

  1. 集合的运算

①若集合A中的每一个元素都是集合B中的元素,则称A是B的子集,记为 A ⊆ B A \subseteq B AB.
②不含任何元素的集合称为空集. 记为 ∅ \varnothing .
③若 A ⊆ B A \subseteq B AB B ⊆ A B \subseteq A BA,则称A与B相等.

交集:设A和B是两个集合,把由既属于A又属于B的元素组成的集合称为A与B的交集,记为 A ∩ B A \cap B AB.
并集:把由A中所有的元素和B中所有的元素组成的集合称为A与B的并集,记为 A ∪ B A \cup B AB.
差集:由所有属于A而不属于B的元素组成的集合称为A与B的差集,记为 A \ B ( 或 A − B ) . A \backslash B(或A-B). A\B(AB).
全集:通常把讨论限制在某一集合U的一个子集范围内,这样的集合U称为全集.
补集:设A是全集U的一个子集,由U中所有不属于A的元素组成的集合称为A的补集,记为 A ˉ 或 A c \bar{A }或A^{c} AˉAc.


区间

  1. 定义

区间是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.

  1. 分类

∀ a , b ∈ R , 且 a < b \forall a,b\in R, 且a<b a,bR,a<b, 则区间可以分为以下几种:

  • 开区间: ( a , b ) = { x ∣ a < x < b , x ∈ R } (a,b)=\{x|a<x<b, x\in R\} (a,b)={xa<x<b,xR}
  • 闭区间: [ a , b ] = { x ∣ a ≤ x ≤ b , x ∈ R } [a,b]=\{x|a\leq x\leq b, x\in R\} [a,b]={xaxb,xR}
  • 左开右闭区间: ( a , b ] = { x ∣ a < x ≤ b , x ∈ R } (a,b]=\{x|a< x\leq b, x\in R\} (a,b]={xa<xb,xR}
  • 左闭右开区间: [ a , b ) = { x ∣ a ≤ x < b , x ∈ R } [a,b)=\{x|a\leq x< b, x\in R\} [a,b)={xax<b,xR}
    上述区间称为有限区间,它们的区间长度是有限的, a a a b b b称为区间的端点.
    引入符号 + ∞ +\infty +(读作正无穷大)和 − ∞ -\infty (读作负无穷大),给出以下几类无限区间
  • [ a , + ∞ ) = { x ∣ x ≥ a , x ∈ R } [a,+\infty)=\{x|x\geq a, x\in R\} [a,+)={xxa,xR}
  • ( − ∞ , b ] = { x ∣ x ≤ b , x ∈ R } (-\infty,b]=\{x|x\leq b, x\in R\} (,b]={xxb,xR}
  • ( − ∞ , + ∞ ) = { x ∣ x ∈ R } (-\infty,+\infty)=\{x| x\in R\} (,+)={xxR}

邻域

  1. 定义

邻域是一种常见的集合. 设 a ∈ R , δ > 0 a\in R,\delta >0 aRδ>0, 所有以点 a a a 为中心的开区间都称为 a a a邻域.

  1. 分类
  • a a a δ \delta δ 邻域:集合 { x ∣    ∣ x − a ∣ < δ } \{x| ~~|x-a|< \delta\} {x  xa<δ}称为 a a a δ \delta δ 邻域,记为 U ( a , δ ) U(a,\delta) U(a,δ).
    U ( a , δ ) = { x ∣    ∣ x − a ∣ < δ } = { x ∣    a − δ < x < a + δ } = ( a − δ , a + δ ) U(a,\delta)=\{x| ~~|x-a|< \delta\}=\{x| ~~a- \delta<x<a+\delta\}=(a- \delta,a+\delta) U(a,δ)={x  xa<δ}={x  aδ<x<a+δ}=(aδ,a+δ)
  • a a a 的去心 δ \delta δ 邻域:把邻域的中心去掉,得到的集合 { x ∣    0 < ∣ x − a ∣ < δ } \{x| ~~0<|x-a|< \delta\} {x  0<xa<δ}称为 a a a 的去心 δ \delta δ 邻域. 记为 U ˚ ( a , δ ) \mathring {U} (a,\delta) U˚(a,δ).
    U ˚ ( a , δ ) = { x ∣    0 < ∣ x − a ∣ < δ } = { x ∣    a − δ < x < a ∪ a < x < a + δ } \mathring {U} (a,\delta)=\{x| ~~0<|x-a|< \delta\}=\{x| ~~a- \delta<x< a \cup a<x<a+ \delta\} U˚(a,δ)={x  0<xa<δ}={x  aδ<x<aa<x<a+δ}.

函数

  1. 定义

x x x y y y是两个变量, D D D是一个给定的非空实数集,如果对于每一个实数 x ∈ D x\in D xD,按照某个对应法则 f f f,总有唯一确定的 y y y值与之对应,则称 y y y是关于 x x x函数,记为 y = f ( x ) y=f(x) y=f(x).
这里 x x x为自变量, y y y为因变量. 因变量 y y y与自变量 x x x之间的这种依赖关系称为函数关系.

注1:函数三要素:定义域、值域、对应关系
①定义域:自变量 x x x的取值范围 D D D称为函数的定义域. 记为 D f D_{f} Df.
②值域:因变量的取值集合称为函数的值域. 记为 R f R_{f} Rf f ( D ) f(D) f(D),即 R f = f ( D ) = { y ∣ y = f ( x ) , x ∈ D } R_{f}=f(D)=\{y| y=f(x), x\in D\} Rf=f(D)={yy=f(x),xD}.
③对应关系: f f f x ⟶ f ( x ) x \longrightarrow f(x) xf(x).

注2:几个特殊函数:
①常值函数 y = C y=C y=C C C C为常数),定义域: R \bm R R,值域: { C } \{C\} {C}.
②绝对值函数 y = ∣ x ∣ y=|x| y=x,定义域: R \bm R R,值域: [ 0 , + ∞ ) [0,+\infty) [0,+).
符号函数 y = s g n x { 1 ,     x > 0 0 ,     x = 0 − 1 ,     x < 0 \begin{align} y=sgnx\left\{ \begin{aligned} 1 , ~~~x>0 \\ 0, ~~~x=0\\ -1,~~~x<0 \end{aligned} \right. \end{align} y=sgnx 1,   x>00,   x=01,   x<0
定义域: R \bm R R,值域: { − 1 , 0 , 1 } \{-1,0,1\} {1,0,1}.
取整函数 y = [ x ] y=[x] y=[x],其中 [ x ] [x] [x]表示不超过 x x x的最大整数. 定义域: R \bm R R,值域: Z \bm Z Z
狄利克雷函数
D ( x ) = { 1 ,     x ∈ Q 0 ,     x ∈ Q c \begin{align} D(x)=\left\{ \begin{aligned} 1 , ~~~x&\in Q \\ 0, ~~~x&\in Q^{c}\\ \end{aligned} \right. \end{align} D(x)={1,   x0,   xQQc
定义域: R \bm R R,值域: { 0 , 1 } \{0,1\} {0,1}.
⑥分段函数:自变量在其定义域的不同变化范围内,对应法则为不同的函数.
例如函数 y = f ( x ) { x + 1 ,     x < 2 x 2 ,          x ≥ 2 \begin{align} y=f(x)\left\{ \begin{aligned} &x+1 , ~~~x<2 \\ &x^{2}, ~~~~~~~~x\geq2\\ \end{aligned} \right. \end{align} y=f(x){x+1,   x<2x2,        x2

  1. 性质
  • 函数的有界性

①设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,数集 X ⊆ D X \subseteq D XD,如果存在常数 M 1 M_{1} M1,对于任一 x ∈ X x \in X xX 都有 f ( x ) ≤ M 1 f(x) \leq M_{1} f(x)M1,则称函数 y = f ( x ) y=f(x) y=f(x) X X X 上有上界.
②设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,数集 X ⊆ D X \subseteq D XD,如果存在常数 M 2 M_{2} M2,对于任一 x ∈ X x \in X xX 都有 f ( x ) ≥ M 2 f(x) \geq M_{2} f(x)M2,则称函数 y = f ( x ) y=f(x) y=f(x) X X X 上有下界.
③如果函数 y = f ( x ) y=f(x) y=f(x) X X X 上既有上界又有下界,则称 y = f ( x ) y=f(x) y=f(x) X X X有界.

也可按下面定义函数有界/无界:

设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,数集 X ⊆ D X \subseteq D XD,若存在 M > 0 M>0 M>0,对于任一 x ∈ X x \in X xX 都有 ∣ f ( x ) ∣ ≤ M |f(x)| \leq M f(x)M,则称函数 y = f ( x ) y=f(x) y=f(x) X X X有界. 若这样的 M M M 不存在,则称函数 y = f ( x ) y=f(x) y=f(x) D D D 上无界. 即如果对于任何正数 M M M,总存在 x 0 ∈ D x_{0} \in D x0D,使得 ∣ f ( x 0 ) ∣ > M |f(x_{0})| > M f(x0)>M,那么函数 y = f ( x ) y=f(x) y=f(x) D D D无界.

注:①上界和下界有无数多个.
        ~~~~~~~         M M M 的取值有无数多个.

  • 函数的单调性
    设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,区间 I ⊆ D I \subseteq D ID. 如果对于区间 I I I上任意两点 x 1 x_{1} x1 x 2 x_{2} x2

x 1 < x 2 x_{1}<x_{2} x1<x2 时,恒有 f ( x 1 ) ≤ f ( x 2 ) f(x_{1})\leq f(x_{2}) f(x1)f(x2),则称函数 f ( x ) f(x) f(x)在区间 I I I上是单调递增的. 若将 f ( x 1 ) ≤ f ( x 2 ) f(x_{1})\leq f(x_{2}) f(x1)f(x2) 改为 f ( x 1 ) < f ( x 2 ) f(x_{1})< f(x_{2}) f(x1)<f(x2),则称函数 f ( x ) f(x) f(x)在区间 I I I上是严格单调递增.

x 1 < x 2 x_{1}<x_{2} x1<x2 时,恒有 f ( x 1 ) ≥ f ( x 2 ) f(x_{1})\geq f(x_{2}) f(x1)f(x2),则称函数 f ( x ) f(x) f(x)在区间 I I I上是单调递减的. 若将 f ( x 1 ) ≥ f ( x 2 ) f(x_{1})\geq f(x_{2}) f(x1)f(x2) 改为 f ( x 1 ) > f ( x 2 ) f(x_{1})> f(x_{2}) f(x1)>f(x2),则称函数 f ( x ) f(x) f(x)在区间 I I I上是严格单调递减.

  • 函数的奇偶性
    设函数 y = f ( x ) y=f(x) y=f(x)的定义域 D D D 关于原点对称,即当 x ∈ D x \in D xD时, − x ∈ D -x \in D xD.

如果对于任一 x ∈ D x \in D xD,有 f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x),则称 f ( x ) f(x) f(x)偶函数. 偶函数的图形关于 y y y对称.

如果对于任一 x ∈ D x \in D xD,有 f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x),则称 f ( x ) f(x) f(x)奇函数. 奇函数的图形关于 原点对称.

  • 函数的周期性

设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,如果存在一个非零常数 T T T ,使得对于任一 x ∈ D x \in D xD,有 x + T ∈ D x+T \in D x+TD,且关系式 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x) 成立,则称函数 f ( x ) f(x) f(x) 是以 T T T 为周期的周期函数. T T T的整数倍也是 f ( x ) f(x) f(x)的周期.
能使 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x) 成立的最小正数 T T T 称为周期函数 f ( x ) f(x) f(x)最小正周期. 通常所说的周期指函数的最小正周期.

注:并不是所有的周期函数都有最小正周期. 例如常值函数,狄利克雷函数.

  1. 几种函数
  • 反函数

设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D f D_{f} Df,值域为 R f R_{f} Rf. 如果对于 R f R_{f} Rf中的每一个 y y y, 都可以由关系式 y = f ( x ) y=f(x) y=f(x)确定唯一的 x x x x ∈ D f x \in D_{f} xDf)与之对应,这样就确定了一个以 y y y为自变量的函数,称这个函数是 y = f ( x ) y=f(x) y=f(x)反函数,记为 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y),其定义域为 R f R_{f} Rf,值域为 D f D_{f} Df.

注:①反函数 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)与原函数 y = f ( x ) y=f(x) y=f(x)具有相同的单调性.
         ~~~~~~~~         ②原函数 y = f ( x ) y=f(x) y=f(x)与反函数 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)的图形关于直线 y = x y=x y=x对称.

  • 复合函数

设函数 y = f ( u ) y=f(u) y=f(u)的定义域为 D f D_{f} Df,函数 u = g ( x ) u=g(x) u=g(x) 的定义域为 D g D_{g} Dg,若存在某区域 D 1 ⊆ D g D_{1} \subseteq D_{g} D1Dg ,使得 u = g ( x ) u=g(x) u=g(x) 的对应值域 R g ⊆ D f R_{g} \subseteq D_{f} RgDf ,则由它们构成的下列函数
y = f [ g ( x ) ] ,   x ⊆ D 1 \begin{align} y=f[g(x)],~~x\subseteq D_{1} \end{align} y=f[g(x)]  xD1
称为由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)构成的 复合函数,它的定义域是 D 1 D_{1} D1 u u u称为中间变量.

注:①复合函数可推广到有限多个复合函数复合的情形.
         ~~~~~~~~         ②构成复合函数的条件 R g ⊆ D f R_{g} \subseteq D_{f} RgDf 不能少.

  1. 初等函数

(1)基本初等函数
基本初等函数主要有以下几种:

  • 幂函数 : y = x μ ( μ ∈ R ) y=x^{\mu}(\mu \in \bm R) y=xμμR
  • 指数函数: y = a x ( a > 0 且 a ≠ 1 ) y=a^{x}(a>0且a\neq 1) y=axa>0a=1
  • 对数函数: y = l o g a x ( a > 0 且 a ≠ 1 ) y=log_{a}x(a>0且a\neq 1) y=logaxa>0a=1
  • 三角函数: y = s i n x , y = c o s x , y = t a n x , y = c o t x , y = s e c x , y = c s c x y=sinx, y=cosx, y=tanx, y=cotx, y=secx, y=cscx y=sinx,y=cosx,y=tanx,y=cotx,y=secx,y=cscx
  • 反三角函数: y = a r c s i n x , y = a r c c o s x , y = a r c t a n x , y = a r c c o t x y=arcsinx, y=arccosx, y=arctanx, y=arccotx y=arcsinx,y=arccosx,y=arctanx,y=arccotx

(2)初等函数

  • 由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.

  • 35
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 45
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是阿芒阿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值