Yolov5学习过程(1)——基于pytorch配置深度学习环境,应该说比较详细啦

1.Yolov5代码下载

下载网址:http://github.com/ultralytics/yolov5
注意代码版本,代码环境
此环境中要求Python以及PyTorch的版本

2.下载、安装、配置Anaconda

官网下载太慢,进入清华镜像网站进行下载,下载网址:http://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
选择合适版本,这里选择的是Anaconda3-5.3.1-Windows-x86_64.exe
在这里插入图片描述
Anaconda安装成功后会自带一个Python,cmd输入:python --version,可以查询出当前python的版本。输入:conda info,查询conda配置。
本次查询结果显示:

								conda-build version:3.15.1
								 conda version:4.5.11
								 python version:3.7.0

3.利用Anconda创建虚拟运行环境 pytorch

Anconda初始存在环境为base,本次输入:

conda create -n pytorch python=3.7

在这里插入图片描述
回复“y”进行下载
在这里插入图片描述
执行命令激活环境。
激活pytorch环境
pytorch环境创建成功

4.基于Anaconda安装pytorch

检测自身电脑的显卡属性,安装pytorch,可输入指令 nvidia-smi查询。
在pytorch环境下执行如下命令

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

在这里插入图片描述
Gpu版本指令需要注意pytorch与cuda版本的对应,如何查询自己的cuda版本请自行搜索,pytorch的网址如下:
https://pytorch.org/
http://pytorch.org/get-started/previous-versions/
注意不要复制:-c pytorch -c conda-forge,否则是采用国外源下载,速度很慢。参考指令如下:

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1

因为我的电脑是AMD的,因此只能安装CPU版本,本次仅是对于yolov5的代码学习,Cpu版本指令:

conda install pytorch torchvision torchaudio cpuonly

在这里插入图片描述
实际操作过程中提示出现错误
提示错误
解决办法,参考博客:
参考此篇博客解决问题
配置成功
进行requirements.txt安装配置。将目录切换到包含requirements.txt的代码目录文件下,输入指令:
记得要进行目录切换
出现如下错误
网上查询说是进行这两行代码即可解决。

pip install --upgrade pip
pip install opencv-python

输入第一行指令提示如下错误:
出现如下错误
进行下载源的更改,指令如下:

pip install package_name -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

package_name改为此处的opencv-python,进行安装
opencv-python安装成功

5.下载其他插件

(1)下载安装pycocotools
pycocotools可以完成对于目标检测的精确度以及MAP的计算。
在这里插入图片描述
(2)下载安装pyqt5
pyqt5可以进行图形界面开发。
在这里插入图片描述

6.下载、安装、配置Pycharm开发环境

Pycharm下载网址:http://www.jetbrains.com/pycharm/download/#section=windows
利用Pycharm打开Yolov5源码工程,初次打开显示如下:
初次打开界面
点击取消后,在右下角进行环境添加,选择我们在conda中创建的虚拟环境。
添加之前创建的环境
进入pytorch配置环境,代码无任何报错,环境配置初步完成 。
在这里插入图片描述
执行detect.py文件,输出如下:
检测结果
或者这样:
在这里插入图片描述
环境配置基本完成,如果对你有所帮助,可以点个赞再走,哈哈!!!
记录学习过程,欢迎讨论交流!!!

YOLOv5是一种基于PyTorch框架的目标检测算法。下面是使用PyTorch实现YOLOv5的一般步骤: 1. 安装依赖:首先,确保您已经安装了PyTorch和相关的依赖库。您可以使用pip或conda安装所需的包。 2. 下载YOLOv5代码:从YOLOv5的GitHub仓库中下载代码。可以通过克隆整个仓库或下载压缩文件来获取代码。 3. 准备数据集:按照上述提到的步骤,准备好训练数据集,并将数据集转换为适用于YOLOv5的格式。 4. 配置模型参数:在YOLOv5代码中找到模型配置文件(通常为`yolov5/models/yolov5.yaml`),根据需要进行修改。您可以调整网络结构、超参数和训练参数等。 5. 训练模型:运行训练脚本 `train.py`,指定数据集路径、模型配置文件和其他训练参数。例如: ``` python train.py --data data.yaml --cfg models/yolov5s.yaml --batch-size 16 --epochs 100 ``` 这将使用指定的数据集进行训练,使用yolov5s配置文件,并设置批量大小为16,训练轮数为100。 6. 评估模型:训练完成后,您可以使用验证集或测试集对模型进行评估。运行评估脚本 `val.py`,指定模型路径、数据集路径和其他相关参数。 7. 推理和预测:使用训练好的模型进行目标检测推理和预测。可以使用 `detect.py` 脚本来进行推理,并指定要检测的图像或视频路径。 这些是使用PyTorch实现YOLOv5的一般步骤。请注意,YOLOv5还有其他功能和选项,如多尺度训练、模型剪枝等。您可以参考YOLOv5的官方文档或GitHub仓库中的明,了解更多详细信息和用法示例。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城市里的牧羊人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>