#机器学习--高等数学基础--第五章:多元函数微分法

引言

        本系列博客旨在为机器学习(深度学习)提供数学理论基础。因此内容更为精简,适合二次学习的读者快速学习或查阅。


1、多元函数的概念

        定义1:设 D D D R 2 R^{2} R2 的一个非空子集,称映射 f : D → R f:D\to R f:DR 为定义在 D D D 上的二元函数,通常记为 z = f ( x , y ) , ( x , y ) ∈ D z=f(x,y),(x,y)\in D z=f(x,y),(x,y)D z = f ( P ) , P ∈ D z=f(P),P\in D z=f(P),PD ,其中点集 D D D 称为该函数的定义域 x x x y y y 称为自变量 z z z 称为因变量

        定义2:一般地,把定义1中的平面点集 D D D 换成 n n n 维空间 R n R^{n} Rn 内的点集 D D D ,映射 f : D → R f:D\to R f:DR 就称为定义在 D D D 上的 n n n 元函数,通常记为: u = f ( x 1 , x 2 , … , x n ) , ( x 1 , x 2 , … , x n ) ∈ D u=f(x_{1},x_{2},\dots,x_{n}),(x_{1},x_{2},\dots,x_{n})\in D u=f(x1,x2,,xn),(x1,x2,,xn)D


2、多元函数的极限

        定义:设二元函数 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y) 的定义域为 D D D P 0 ( x 0 , y 0 ) P_{0}(x_{0},y_{0}) P0(x0,y0) D D D 的聚点,如果存在常数 A A A ,对于任意给定的正数 ϵ \epsilon ϵ ,总存在正数 δ \delta δ ,使得当点 P ( x , y ) ∈ D ∩ U o ( P 0 , δ ) P(x,y)\in D\cap\overset{o}{U}(P_{0},\delta) P(x,y)DUo(P0,δ) 时,都有 ∣ f ( P ) − A ∣ = ∣ f ( x , y ) − A ∣ < ϵ |f(P)-A|=|f(x,y)-A|<\epsilon f(P)A=f(x,y)A<ϵ 成立,那么就称常数 A A A 为函数 f ( x , y ) f(x,y) f(x,y) ( x , y ) → ( x 0 , y 0 ) (x,y)\to(x_{0},y_{0}) (x,y)(x0,y0) 时的极限,记作 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A \lim_{(x,y)\to(x_{0},y_{0})}f(x,y)=A (x,y)(x0,y0)limf(x,y)=A


3、偏导数

        定义:设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0) 的某一邻域内有定义,当 y y y 固定在 y 0 y_{0} y0 x x x x 0 x_{0} x0 处有增量 Δ x \Delta x Δx 时,相应的函数有增量 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) f(x_{0}+\Delta x,y_{0})-f(x_{0},y_{0}) f(x0+Δx,y0)f(x0,y0) ,如果 lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x\to0}\frac{f(x_{0}+\Delta x,y_{0})-f(x_{0},y_{0})}{\Delta x} limΔx0Δxf(x0+Δx,y0)f(x0,y0) 存在,那么称此极限为函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0) x x x 的偏导数,记作 ∂ z ∂ x ∣ x = x 0 y = y 0 或 f x ( x 0 , y 0 ) \left .\frac{\partial z}{\partial x}\right | _{\begin{matrix}x=x_{0}\\y=y_{0}\end{matrix}}或f_{x}(x_{0},y_{0}) xz x=x0y=y0fx(x0,y0)        类似地,函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0) y y y 的偏导数定义为 lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \lim_{\Delta y\to0}\frac{f(x_{0},y_{0}+\Delta y)-f(x_{0},y_{0})}{\Delta y} limΔy0Δyf(x0,y0+Δy)f(x0,y0) ,记作 ∂ z ∂ y ∣ x = x 0 y = y 0 或 f y ( x 0 , y 0 ) \left .\frac{\partial z}{\partial y}\right | _{\begin{matrix}x=x_{0}\\y=y_{0}\end{matrix}}或f_{y}(x_{0},y_{0}) yz x=x0y=y0fy(x0,y0)


4、全微分

        定义:设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x , y ) (x,y) (x,y) 的某邻域内有定义,如果函数在点 ( x , y ) (x,y) (x,y) 的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z=f(x+\Delta x,y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y) 可表示为 Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z=A\Delta x+B\Delta y+o(\rho) Δz=AΔx+BΔy+o(ρ) ,其中 A A A B B B 不依赖于 Δ x \Delta x Δx Δ y \Delta y Δy 而仅与 x x x y y y 有关, ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} ρ=(Δx)2+(Δy)2 ,那么称函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x , y ) (x,y) (x,y) 可微分,而 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy 称为函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x , y ) (x,y) (x,y)全微分,记作 d z dz dz ,即 d z = A Δ x + B Δ y dz=A\Delta x+B\Delta y dz=AΔx+BΔy

        定理:
        1)如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x , y ) (x,y) (x,y) 可微分,那么该函数在点 ( x , y ) (x,y) (x,y) 的偏导数 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ y \frac{\partial z}{\partial y} yz 必定存在,且函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x , y ) (x,y) (x,y) 的全微分为 d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy dz=xzdx+yzdy


5、多元复合函数的求导法则

        1)如果函数 u = φ ( t ) u=\varphi(t) u=φ(t) v = ψ ( t ) v=\psi(t) v=ψ(t) 都在点 t t t 可导,函数 z = f ( u , v ) z=f(u,v) z=f(u,v) 在对应点 ( u , v ) (u,v) (u,v) 具有连续偏导数,那么复合函数 z = f [ φ ( t ) , ψ ( t ) ] z=f[\varphi(t),\psi(t)] z=f[φ(t),ψ(t)] 在点 t t t 可导,且有 d z d t = ∂ z ∂ u d u d t + ∂ z ∂ v d v d t \frac{dz}{dt}=\frac{\partial z}{\partial u}\frac{du}{dt}+\frac{\partial z}{\partial v}\frac{dv}{dt} dtdz=uzdtdu+vzdtdv
        2)如果函数 u = φ ( x , y ) u=\varphi(x,y) u=φ(x,y) v = ψ ( x , y ) v=\psi(x,y) v=ψ(x,y) 都在点 ( x , y ) (x,y) (x,y) 具有对 x x x 及对 y y y 的偏导数,函数 z = f ( u , v ) z=f(u,v) z=f(u,v) 在对应点 ( u , v ) (u,v) (u,v) 具有连续偏导数,那么复合函数 z = f [ φ ( x , y ) , ψ ( x , y ) ] z=f[\varphi(x,y),\psi(x,y)] z=f[φ(x,y),ψ(x,y)] 在点 ( x , y ) (x,y) (x,y) 的两个偏导数都存在,且有 ∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x} xz=uzxu+vzxv ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} yz=uzyu+vzyv
        3)如果函数 u = φ ( x , y ) u=\varphi(x,y) u=φ(x,y) 在点 ( x , y ) (x,y) (x,y) 具有对 x x x 及对 y y y 的偏导数,函数 v = ψ ( y ) v=\psi(y) v=ψ(y) 在点 y y y 可导,函数 z = f ( u , v ) z=f(u,v) z=f(u,v) 在对应点 ( u , v ) (u,v) (u,v) 具有连续偏导数,那么复合函数 z = f [ φ ( x , y ) , ψ ( y ) ] z=f[\varphi(x,y),\psi(y)] z=f[φ(x,y),ψ(y)] 在点 ( x , y ) (x,y) (x,y) 的两个偏导数都存在,且有 ∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x} xz=uzxu ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v d v d y \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{dv}{dy} yz=uzyu+vzdydv


6、方向导数与梯度

        定义1:设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_{0}(x_{0},y_{0}) P0(x0,y0) 的某个邻域 U ( P 0 ) U(P_{0}) U(P0) 内有定义, P ( x 0 + t cos ⁡ α , y 0 + t cos ⁡ β ) P(x_{0}+t\cos\alpha,y_{0}+t\cos\beta) P(x0+tcosα,y0+tcosβ) l l l 上另一点,且 P ∈ U ( P 0 ) P\in U(P_{0}) PU(P0) ,如果函数增量 f ( x 0 + t cos ⁡ α , y 0 + t cos ⁡ β ) − f ( x 0 , y 0 ) f(x_{0}+t\cos\alpha,y_{0}+t\cos\beta)-f(x_{0},y_{0}) f(x0+tcosα,y0+tcosβ)f(x0,y0) P P P P 0 P_{0} P0 的距离 ∣ P P 0 ∣ = t |PP_{0}|=t PP0=t 的比值 f ( x 0 + t cos ⁡ α , y 0 + t cos ⁡ β ) − f ( x 0 , y 0 ) t \frac{f(x_{0}+t\cos\alpha,y_{0}+t\cos\beta)-f(x_{0},y_{0})}{t} tf(x0+tcosα,y0+tcosβ)f(x0,y0) P P P 沿着 l l l 趋于 P 0 P_{0} P0 (即 t → 0 + t\to0^{+} t0+ )时的极限存在,那么称此极限为函数 f ( x , y ) f(x,y) f(x,y) 在点 P 0 P_{0} P0 沿方向 l l l方向导数,记作 ∂ f ∂ l ∣ x 0 , y 0 \left.\frac{\partial f}{\partial l}\right|_{x_{0},y_{0}} lf x0,y0 ,即 ∂ f ∂ l ∣ x 0 , y 0 = lim ⁡ t → 0 + f ( x 0 + t cos ⁡ α , y 0 + t cos ⁡ β ) − f ( x 0 , y 0 ) t \left.\frac{\partial f}{\partial l}\right|_{x_{0},y_{0}}=\lim_{t\to0^{+}}\frac{f(x_{0}+t\cos\alpha,y_{0}+t\cos\beta)-f(x_{0},y_{0})}{t} lf x0,y0=t0+limtf(x0+tcosα,y0+tcosβ)f(x0,y0)

        定义2:设函数 f ( x , y ) f(x,y) f(x,y) 在平面区域 D D D 内具有一阶连续偏导数,则对于每一点 P 0 ( x 0 , y 0 ) ∈ D P_{0}(x_{0},y_{0})\in D P0(x0,y0)D ,都可定出一个向量 f x ( x 0 , y 0 ) i + f y ( x 0 , y 0 ) j f_{x}(x_{0},y_{0})i+f_{y}(x_{0},y_{0})j fx(x0,y0)i+fy(x0,y0)j ,其中 i = ( 1 , 0 ) , j = ( 0 , 1 ) i=(1,0),j=(0,1) i=(1,0),j=(0,1) ,这向量称为函数 f ( x , y ) f(x,y) f(x,y) 在点 P 0 ( x 0 , y 0 ) P_{0}(x_{0},y_{0}) P0(x0,y0)梯度,记作 g r a d   f ( x 0 , y 0 ) grad\ f(x_{0},y_{0}) grad f(x0,y0) ∇ f ( x 0 , y 0 ) \nabla f(x_{0},y_{0}) f(x0,y0) ,即 g r a d   f ( x 0 , y 0 ) = ∇ f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) i + f y ( x 0 , y 0 ) j ,其中 i = ( 1 , 0 ) , j = ( 0 , 1 ) grad\ f(x_{0},y_{0})=\nabla f(x_{0},y_{0})=f_{x}(x_{0},y_{0})i+f_{y}(x_{0},y_{0})j,其中i=(1,0),j=(0,1) grad f(x0,y0)=f(x0,y0)=fx(x0,y0)i+fy(x0,y0)j,其中i=(1,0),j=(0,1)        其中 ∇ = ∂ ∂ x i + ∂ ∂ y j \nabla=\frac{\partial}{\partial x}i+\frac{\partial}{\partial y}j =xi+yj 称为向量微分算子Nabla算子 ∇ f = ∂ f ∂ x i + ∂ f ∂ y j \nabla f=\frac{\partial f}{\partial x}i+\frac{\partial f}{\partial y}j f=xfi+yfj

        定理:
        1)如果函数 f ( x , y ) f(x,y) f(x,y) 在点 P 0 ( x 0 , y 0 ) P_{0}(x_{0},y_{0}) P0(x0,y0) 可微分,那么函数在该点沿任一方向 l l l 的方向导数存在,且有 ∂ f ∂ l ∣ x 0 , y 0 = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) cos ⁡ β \left.\frac{\partial f}{\partial l}\right|_{x_{0},y_{0}}=f_{x}(x_{0},y_{0})\cos\alpha+f_{y}(x_{0},y_{0})\cos\beta lf x0,y0=fx(x0,y0)cosα+fy(x0,y0)cosβ        其中 cos ⁡ α \cos\alpha cosα cos ⁡ β \cos\beta cosβ 是方向 l l l 的方向余弦。


7、多元函数的极值

        1)设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0) 具有偏导数,且在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0) 处有极值,则有 f x ( x 0 , y 0 ) = 0 , f y ( x 0 , y 0 ) = 0 f_{x}(x_{0},y_{0})=0,f_{y}(x_{0},y_{0})=0 fx(x0,y0)=0,fy(x0,y0)=0
        2)设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0) 的某邻域内连续且有一阶及二阶连续偏导数,又 f x ( x 0 , y 0 ) = 0 , f y ( x 0 , y 0 ) = 0 f_{x}(x_{0},y_{0})=0,f_{y}(x_{0},y_{0})=0 fx(x0,y0)=0,fy(x0,y0)=0 ,令 f x x ( x 0 , y 0 ) = A , f x y ( x 0 , y 0 ) = B , f y y ( x 0 , y 0 ) = C f_{xx}(x_{0},y_{0})=A,f_{xy}(x_{0},y_{0})=B,f_{yy}(x_{0},y_{0})=C fxx(x0,y0)=A,fxy(x0,y0)=B,fyy(x0,y0)=C ,则 f ( x , y ) f(x,y) f(x,y) ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0) 处是否取得极值的条件如下:
                (1) A C − B 2 > 0 AC-B^{2}>0 ACB2>0 时具有极值,且当 A < 0 A<0 A<0 时有极大值,当 A > A> A> 时有极小值;
                (2) A C − B 2 < 0 AC-B^{2}<0 ACB2<0 时没有极值;
                (3) A C − B 2 = 0 AC-B^{2}=0 ACB2=0 时可能有极值,也可能没有极值,需另作讨论。
        3)拉格朗日乘数法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值