反演

一般情况下如果
f ( n ) = ∑ i = 0 n a n , i g ( i ) ⟺ g ( n ) = ∑ i = 0 n b n , i f ( i ) f(n)=\sum_{i=0}^{n}a_{n,i}g(i)\Longleftrightarrow g(n)=\sum_{i=0}^{n}b_{n,i}f(i) f(n)=i=0nan,ig(i)g(n)=i=0nbn,if(i)
成立,则
f ( n ) = ∑ i = 0 n a n , i g ( i + k ) ⟺ g ( n + k ) = ∑ i = 0 n b n , i f ( i ) f(n)=\sum_{i=0}^{n}a_{n,i}g(i+k)\Longleftrightarrow g(n+k)=\sum_{i=0}^{n}b_{n,i}f(i) f(n)=i=0nan,ig(i+k)g(n+k)=i=0nbn,if(i)
也成立

二项式反演

∑ i = j n ( − 1 ) i − j ( n i ) ( i j ) = [ n − j = 0 ] ① \sum_{i=j}^{n}(-1)^{i-j}{n\choose i}{i\choose j}=[n-j=0]\quad ① i=jn(1)ij(in)(ji)=[nj=0]
证明
∑ i = j n ( − 1 ) i − j ( n i ) ( i j ) = ∑ i = j n ( − 1 ) i − j ( n j ) ( n − j i − j ) = ( n j ) ∑ i = j n ( − 1 ) i − j ( n − j i − j ) = ( n j ) ∑ i = 0 n − j ( − 1 ) i ( n − j i ) = ( n j ) ( 1 − 1 ) n − j = ( n j ) [ n − j = 0 ] = [ n − j = 0 ] \begin{aligned} \sum_{i=j}^{n}(-1)^{i-j}{n\choose i}{i\choose j}&=\sum_{i=j}^{n}(-1)^{i-j}{n\choose j}{n-j\choose i-j}\\ &={n\choose j}\sum_{i=j}^{n}(-1)^{i-j}{n-j\choose i-j}\\ &={n\choose j}\sum_{i=0}^{n-j}(-1)^i{n-j\choose i}\\ &={n\choose j}(1-1)^{n-j}\\ &={n\choose j}[n-j=0]\\ &=[n-j=0] \end{aligned} i=jn(1)ij(in)(ji)=i=jn(1)ij(jn)(ijnj)=(jn)i=jn(1)ij(ijnj)=(jn)i=0nj(1)i(inj)=(jn)(11)nj=(jn)[nj=0]=[nj=0]
f ( n ) = ∑ i = 0 n ( n i ) g ( i ) ⟺ g ( n ) = ∑ i = 0 n ( − 1 ) n − i ( n i ) f ( i ) \begin{aligned} f(n)=\sum_{i=0}^{n}{n \choose i}g(i)&\Longleftrightarrow g(n)=\sum_{i=0}^{n}(-1)^{n-i}{n\choose i}f(i)\\ \end{aligned} f(n)=i=0n(in)g(i)g(n)=i=0n(1)ni(in)f(i)
证明
f ( n ) = ∑ i = 0 n ( n i ) g ( i + k ) = ∑ i = 0 n ∑ j = 0 i ( − 1 ) i − j ( n i ) ( i j ) f ( j ) = ∑ j = 0 n f ( j ) ∑ i = j n ( − 1 ) i − j ( n i ) ( i j ) = ∑ j = 0 n f ( j ) [ n − j = 0 ] 根 据 公 式 ① = f ( n ) \begin{aligned} f(n)&=\sum_{i=0}^{n}{n \choose i}g(i+k)\\ &=\sum_{i=0}^{n}\sum_{j=0}^{i}(-1)^{i-j}{n\choose i}{i\choose j}f(j)\\ &=\sum_{j=0}^{n}f(j)\sum_{i=j}^{n}(-1)^{i-j}{n\choose i}{i\choose j}\\ &=\sum_{j=0}^{n}f(j)[n-j=0]\quad 根据公式①\\ &=f(n) \end{aligned} f(n)=i=0n(in)g(i+k)=i=0nj=0i(1)ij(in)(ji)f(j)=j=0nf(j)i=jn(1)ij(in)(ji)=j=0nf(j)[nj=0]=f(n)

子集反演

∑ T ⊆ S ( − 1 ) ∣ T ∣ = [ S = ∅ ] ② \sum_{T\subseteq S}(-1)^{|T|}=[S=\emptyset]\quad ② TS(1)T=[S=]
证明
枚举集合 T T T可以变成枚举集合 T T T的元素个数 i i i,然后这样的集合有 ( ∣ S ∣ i ) {|S|\choose i} (iS)
∑ T ⊆ S ( − 1 ) ∣ T ∣ = ∑ i = 0 ∣ S ∣ ( − 1 ) i ( ∣ S ∣ i ) = [ ∣ S ∣ = 0 ] = [ S = ∅ ] \begin{aligned} \sum_{T\subseteq S}(-1)^{|T|}&=\sum_{i=0}^{|S|}(-1)^{i}{|S|\choose i}\\ &=[|S|=0]\\ &=[S=\emptyset] \end{aligned} TS(1)T=i=0S(1)i(iS)=[S=0]=[S=]
f ( S ) = ∑ T ⊆ S g ( T ) ⟺ g ( S ) = ∑ T ⊆ S ( − 1 ) ∣ S ∣ − ∣ T ∣ f ( T ) f(S)=\sum_{T\subseteq S}g(T)\Longleftrightarrow g(S)=\sum_{T\subseteq S}(-1)^{|S|-|T|}f(T) f(S)=TSg(T)g(S)=TS(1)STf(T)
证明
f ( S ) = ∑ T ⊆ S g ( T ) = ∑ T ⊆ S ∑ Q ⊆ T ( − 1 ) ∣ T ∣ − ∣ Q ∣ f ( Q ) = ∑ Q ⊆ S f ( Q ) ∑ Q ⊆ T ⊆ S ( − 1 ) ∣ T ∣ − ∣ Q ∣ = ∑ Q ⊆ S f ( Q ) ∑ ∅ ⊆ T ⊆ S − Q ( − 1 ) ∣ T ∣ = ∑ Q ⊆ S f ( Q ) [ S − Q = ∅ ] 根 据 公 式 ② = f ( S ) \begin{aligned} f(S)&=\sum_{T\subseteq S}g(T)\\ &=\sum_{T\subseteq S}\sum_{Q\subseteq T}(-1)^{|T|-|Q|}f(Q)\\ &=\sum_{Q\subseteq S}f(Q)\sum_{Q\subseteq T\subseteq S}(-1)^{|T|-|Q|}\\ &=\sum_{Q\subseteq S}f(Q)\sum_{\emptyset\subseteq T\subseteq S-Q}(-1)^{|T|}\\ &=\sum_{Q\subseteq S}f(Q)[S-Q=\emptyset]\quad 根据公式②\\ &=f(S) \end{aligned} f(S)=TSg(T)=TSQT(1)TQf(Q)=QSf(Q)QTS(1)TQ=QSf(Q)TSQ(1)T=QSf(Q)[SQ=]=f(S)

多重子集反演

现在考虑的是多重集合
φ ( S ) = { 0 S 是 多 重 集 合 ( − 1 ) ∣ S ∣ S 不 是 多 重 集 合 \varphi(S)=\begin{cases} 0\quad S是多重集合\\ (-1)^{|S|}\quad S不是多重集合 \end{cases} φ(S)={0S(1)SS
∑ T ⊆ S φ ( T ) = [ S = ∅ ] \sum_{T\subseteq S}\varphi(T)=[S=\emptyset] TSφ(T)=[S=]
证明
T T T如果是多重集合,则不会对式子有贡献,所以只要考虑不是多重集合,那么证明和上面一样,枚举集合 T T T可以变成枚举集合的元素个数 i i i,然后这样的集合有 ( ∣ S ∣ i ) {|S|\choose i} (iS)种, ∣ S ∣ |S| S的含义变成 S S S去重后的大小,后面就和上面一样。
反演式子也和上面类似。
f ( S ) = ∑ T ⊆ S g ( T ) ⟺ g ( S ) = ∑ T ⊆ S φ ( S − T ) f ( T ) f(S)=\sum_{T\subseteq S}g(T)\Longleftrightarrow g(S)=\sum_{T\subseteq S}\varphi(S-T)f(T) f(S)=TSg(T)g(S)=TSφ(ST)f(T)

反方向子集反演

f ( S ) = ∑ S ⊆ T g ( T ) ⟺ g ( S ) = ∑ S ⊆ T ( − 1 ) ∣ T ∣ − ∣ S ∣ f ( T ) f(S)=\sum_{S\subseteq T}g(T)\Longleftrightarrow g(S)=\sum_{S\subseteq T}(-1)^{|T|-|S|}f(T) f(S)=STg(T)g(S)=ST(1)TSf(T)
证明和上面类似

单位根反演

1 n ∑ i = 0 n − 1 ω n m i = [ m   m o d   n = 0 ] ③ \frac{1}{n}\sum_{i=0}^{n-1}\omega^{mi}_n=[m\ mod\,n=0]\quad ③ n1i=0n1ωnmi=[m modn=0]
证明
f ( m ) = ∑ i = 0 n − 1 ω n m i g ( i ) ⟺ g ( m ) = 1 n ∑ i = 0 n − 1 ω n − m i f ( i ) 0 ≤ m ≤ n − 1 \begin{aligned} f(m)=\sum_{i=0}^{n-1}\omega_n^{mi}g(i)\Longleftrightarrow g(m)=\frac{1}{n}\sum_{i=0}^{n-1}\omega_n^{-mi}f(i)\quad 0\le&m\le n-1\\ \end{aligned} f(m)=i=0n1ωnmig(i)g(m)=n1i=0n1ωnmif(i)0mn1
证明
f ( m ) = ∑ i = 0 n − 1 ω n m i g ( i ) 0 ≤ m ≤ n − 1 = ∑ i = 0 n − 1 ω n m i 1 n ∑ j = 0 n − 1 ω n − i j f ( j ) = ∑ j = 0 n − 1 f ( j ) 1 n ∑ i = 0 n − 1 ω n i ( m − j ) 根 据 公 式 ③ = ∑ j = 0 n − 1 f ( j ) [ m − j   m o d   n = 0 ] = ∑ j = 0 n − 1 f ( j ) [ m − j = 0 ] = f ( m ) \begin{aligned} f(m)&=\sum_{i=0}^{n-1}\omega_n^{mi}g(i)\quad 0\le m\le n-1\\ &=\sum_{i=0}^{n-1}\omega_n^{mi}\frac{1}{n}\sum_{j=0}^{n-1}\omega_n^{-ij}f(j)\\ &=\sum_{j=0}^{n-1}f(j)\frac{1}{n}\sum_{i=0}^{n-1}\omega_n^{i(m-j)}\quad 根据公式③\\ &=\sum_{j=0}^{n-1}f(j)[m-j\ mod\,n=0]\\ &=\sum_{j=0}^{n-1}f(j)[m-j=0]\\ &=f(m) \end{aligned} f(m)=i=0n1ωnmig(i)0mn1=i=0n1ωnmin1j=0n1ωnijf(j)=j=0n1f(j)n1i=0n1ωni(mj)=j=0n1f(j)[mj modn=0]=j=0n1f(j)[mj=0]=f(m)

min-max反演

m a x ( S ) = ∑ T ⊆ S ( − 1 ) ∣ T ∣ − 1 m i n ( T ) m i n ( S ) = ∑ T ⊆ S ( − 1 ) ∣ T ∣ − 1 m a x ( T ) \begin{aligned} max(S)&=\sum_{T\subseteq S}(-1)^{|T|-1}min(T)\\ min(S)&=\sum_{T\subseteq S}(-1)^{|T|-1}max(T) \end{aligned} max(S)min(S)=TS(1)T1min(T)=TS(1)T1max(T)
证明
枚举第 i i i大的值 a i a_i ai作为 m i n ( T ) min(T) min(T),然后枚举哪些 T T T满足 a i = m i n ( T ) a_i=min(T) ai=min(T)
m a x ( S ) = a 1 = ∑ i = 1 ∣ S ∣ ∑ j = 1 i ( i − 1 j − 1 ) ( − 1 ) j − 1 a i = ∑ i = 1 ∣ S ∣ a i ∑ j = 0 i − 1 ( i − 1 j ) ( − 1 ) j = ∑ i = 1 ∣ S ∣ a i [ i − 1 = 0 ] = a 1 \begin{aligned} max(S)=a_{1}&=\sum_{i=1}^{|S|}\sum_{j=1}^{i}{i-1\choose j-1}(-1)^{j-1}a_i\\ &=\sum_{i=1}^{|S|}a_i\sum_{j=0}^{i-1}{i-1\choose j}(-1)^j\\ &=\sum_{i=1}^{|S|}a_i[i-1=0]\\ &=a_1 \end{aligned} max(S)=a1=i=1Sj=1i(j1i1)(1)j1ai=i=1Saij=0i1(ji1)(1)j=i=1Sai[i1=0]=a1
第二个证明类似

kth min-max反演

假设容斥系数为 f ( ∣ T ∣ ) f(|T|) f(T)
k t h _ m a x ( S ) = a k = ∑ T ⊆ S f ( ∣ T ∣ ) m i n ( T ) = ∑ i = 1 ∣ S ∣ a i ∑ j = 1 i ( i − 1 j − 1 ) f ( j ) \begin{aligned} kth\_max(S)=a_k&=\sum_{T\subseteq S}f(|T|)min(T)\\ &=\sum_{i=1}^{|S|}a_i\sum_{j=1}^{i}{i-1\choose j-1}f(j)\\ \end{aligned} kth_max(S)=ak=TSf(T)min(T)=i=1Saij=1i(j1i1)f(j)
向上面一样,只要找到 f ( j ) f(j) f(j),使得
∑ j = 1 i ( i − 1 j − 1 ) f ( j ) = [ i − k = 0 ] ∑ j = 0 i − 1 ( i − 1 j ) f ( j + 1 ) = [ i − k = 0 ] \begin{aligned} \sum_{j=1}^{i}{i-1\choose j-1}f(j)&=[i-k=0]\\ \sum_{j=0}^{i-1}{i-1\choose j}f(j+1)&=[i-k=0] \end{aligned} j=1i(j1i1)f(j)j=0i1(ji1)f(j+1)=[ik=0]=[ik=0]
式子就能成立。根据二项式反演得到
f ( i ) = ∑ j = 0 i − 1 ( − 1 ) i − 1 − j ( i − 1 j ) [ j − k + 1 = 0 ] = ( − 1 ) i − k ( i − 1 k − 1 ) \begin{aligned} f(i)&=\sum_{j=0}^{i-1}(-1)^{i-1-j}{i-1\choose j}[j-k+1=0]\\ &=(-1)^{i-k}{i-1\choose k-1} \end{aligned} f(i)=j=0i1(1)i1j(ji1)[jk+1=0]=(1)ik(k1i1)
所以得到
k t h _ m a x ( S ) = ∑ T ⊆ S ( − 1 ) ∣ T ∣ − k ( ∣ T ∣ − 1 k − 1 ) m i n ( T ) kth\_max(S)=\sum_{T\subseteq S}(-1)^{|T|-k}{|T|-1\choose k-1}min(T) kth_max(S)=TS(1)Tk(k1T1)min(T)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值