CMU 10-414/714: Deep Learning Systems --hw2

hw2

实现功能

  1. 实现参数的多种初始化:用代码实现对应的数学公式即可,原理和公式推导见这里
    • Xavier均匀分布版
    # 对于全连接层来说,fan_in是上一层的神经元数目,fan_out是当前层的神经元数目
    # gain是放缩因子,用于调整初始化的范围,默认为1
    def xavier_uniform(fan_in, fan_out, gain=1.0, **kwargs):
        a = gain * math.sqrt(6/(fan_in+fan_out))  # w服从(-a,a)的均匀分布
    
        # rand(fan_in,fan_out)用随机数生成上一层和当前层之间的参数矩阵,范围0~1
        # 通过乘2减1后,此时参数矩阵中的值落在[-1,1]内
        # 然后再乘上a,让最后的参数矩阵服从-a到a的均匀分布
        return a * (2*rand(fan_in, fan_out, **kwargs)-1)
    
    • Xavier正态分布版
    def xavier_normal(fan_in, fan_out, gain=1.0, **kwargs):
        std = gain * math.sqrt(2/(fan_in+fan_out))
        return std * randn(fan_in, fan_out, **kwargs)
    
    • Kaiming均匀分布版
    # 使用ReLU激活函数的推荐放缩因子gain=根号2
    def kaiming_uniform(fan_in, fan_out, nonlinearity="relu", **kwargs):
        assert nonlinearity == "relu", "Only relu supported currently"
        gain = math.sqrt(2)
        bound = gain * math.sqrt(3/fan_in)
        return bound * (2*rand(fan_in, fan_out, **kwargs)-1)
    
    • Kaiming 正态分布版
    def kaiming_normal(fan_in, fan_out, nonlinearity="relu", **kwargs):
        assert nonlinearity == "relu", "Only relu supported currently"
        gain = math.sqrt(2)
        std = gain / math.sqrt(fan_in)
        return std * randn(fan_in, fan_out, **kwargs)
    
  2. 实现神经网络里的一些模块
    • Linear
      class Linear(Module):
          def __init__(self, in_features, out_features, bias=True, device=None, dtype="float32"):
              super().__init__()
              self.in_features = in_features
              self.out_features = out_features
      
              ### BEGIN YOUR SOLUTION
              self.weight = Parameter(init.kaiming_uniform(in_features, out_features, requires_grad=True))
              if bias:
                self.bias = Parameter(init.kaiming_uniform(out_features, 1, requires_grad=True).reshape((1, out_features)))
              else:
                self.bias = None
              ### END YOUR SOLUTION
      
          def forward(self, X: Tensor) -> Tensor:
              ### BEGIN YOUR SOLUTION
              # y=Wx+b,注意b要广播
              X_mul_weight = X @ self.weight
              if self.bias:
                return X_mul_weight + self.bias.broadcast_to(X_mul_weight.shape)
              else:
                return X_mul_weight
              ### END YOUR SOLUTION
      
    • ReLU
      class ReLU(Module):
          def forward(self, x: Tensor) -> Tensor:
              ### BEGIN YOUR SOLUTION
              return ops.relu(x)
              ### END YOUR SOLUTION
      
      # 在ops.py中,ReLU算子的定义如下
      class ReLU(TensorOp):
          def compute(self, a):
              ### BEGIN YOUR SOLUTION
              return array_api.maximum(a, 0)
              ### END YOUR SOLUTION
      
          def gradient(self, out_grad, node):
              ### BEGIN YOUR SOLUTION
              a = node.inputs[0].realize_cached_data()
              mask = Tensor(a > 0)
              return out_grad * mask
              ### END YOUR SOLUTION
      
    • Sequential
      # sequential是一个容器模块,将多个子模块按顺序串联起来形成一个完整的神经网络模型
      class Sequential(Module):
          def __init__(self, *modules):
              super().__init__()
              self.modules = modules
      
          def forward(self, x: Tensor) -> Tensor:
              ### BEGIN YOUR SOLUTION
              for module in self.modules:
                x = module(x)
              return x
              ### END YOUR SOLUTION
      
    • 实现一个算子LogSumExp
      class LogSumExp(TensorOp):
          def __init__(self, axes: Optional[tuple] = None):
              self.axes = axes # axes用于指定进行操作的轴或轴组:
              # 若axes是一个整数,表示在指定的单个轴上执行操作
              # 若axes是一个元组或列表,表示在指定的多个轴上执行操作
          
          # 在LogSumExp中,先找到Z在指定轴上的最大值max,然后通过减去最大值作数值稳定化处理
          # 接着对稳定化后的结果进行指定轴上的求和,并取对数
          # 最后将ret按照指定的轴形状进行调整
          # 例如二维张量Z的形状为(3,4),计算Z.LogSumExp(axes=(0,)):先计算第一个轴上的最大值,得到(1,4)的张量
          # 然后减去最大值、计算指数、求和、取对数,得到(1,4)的张量
          # 最后根据指定的轴形状,将结果调整为(4,)的张量
          def compute(self, Z):
              ### BEGIN YOUR SOLUTION
              max = array_api.max(Z, axis=self.axes, keepdims=1)
              ret = array_api.log(
                array_api.exp(Z-max).sum(axis=self.axes, keepdims=1)) \
                + max
              if self.axes:  # 若有指定的轴或轴组,就根据它来确定输出形状
                  # 列表推导式。enumerate(Z.shape)将返回一个包含索引和形状大小的迭代器
                  # for i, size in enumerate(Z.shape) if i not in self.axes:若不是指定的轴,就保留(在指定的轴上会进行上面的一系列操作)
                  out_shape = [size for i, size in enumerate(Z.shape) if i not in self.axes]
              else:
                  out_shape = ()
              ret.resize(tuple(out_shape))
              return ret
              ### END YOUR SOLUTION
      
          def gradient(self, out_grad, node):
              ### BEGIN YOUR SOLUTION
              Z = node.inputs[0]
              if self.axes:
                shape = [1] * len(Z.shape)
                s = set(self.axes)
                j = 0
                for i in range(len(shape)):
                  if i not in s:
                    shape[i] = node.shape[j]
                    j += 1
                node_new = node.reshape(shape)
                grad_new = out_grad.reshape(shape)
              else:
                node_new = node
                grad_new = out_grad
              return grad_new * exp(Z-node_new)
              ### END YOUR SOLUTION
      
    • SoftmaxLoss
      class SoftmaxLoss(Module):
          def forward(self, logits: Tensor, y: Tensor):
              ### BEGIN YOUR SOLUTION
              # 用LogSumExp来完成softmaxloss
              exp_sum = ops.logsumexp(logits, axes=(1,)).sum()
              z_y_sum = (logits*init.one_hot(logits.shape[1],y)).sum()
              return (exp_sum-z_y_sum) / logits.shape[0]
              ### END YOUR SOLUTION
      
    • LayerNorm1d
      class LayerNorm1d(Module):
          def __init__(self, dim, eps=1e-5, device=None, dtype="float32"):
              super().__init__()
              self.dim = dim
              self.eps = eps
              ### BEGIN YOUR SOLUTION
              self.weight = Parameter(init.ones(self.dim, requires_grad=True))
              self.bias = Parameter(init.zeros(self.dim, requires_grad=True))
              ### END YOUR SOLUTION
      
          def forward(self, x: Tensor) -> Tensor:
              ### BEGIN YOUR SOLUTION
              batch_size = x.shape[0]
              feature_size = x.shape[1]
              # x.sum(axes=(1,))表示沿着列求和,即对一行的元素相加,每一行都如此
              mean = x.sum(axes=(1,)).reshape((batch_size,1)) / feature_size
              x_minus_mean = x - mean.broadcast_to(x.shape)
              x_std = ((x_minus_mean**2).sum(axes=(1,)).reshape((batch_size,1)) / feature_size + self.eps) ** 0.5
              normed = x_minus_mean / x_std.broadcast_to(x.shape)
              return self.weight.broadcast_to(x.shape) * normed + self.bias.broadcast_to(x.shape)
              ### END YOUR SOLUTION
      
    • Flatten
      class Flatten(Module):
          def forward(self, X):
              ### BEGIN YOUR SOLUTION
              # 假设输入X形状为(2,3,4),则X.reshape(2,-1)后的形状为(2,12),即第2、3维度的数据被拉平成了一行
              return X.reshape((X.shape[0], -1))
              ### END YOUR SOLUTION
      
    • BatchNorm1d
      class BatchNorm1d(Module):
          def __init__(self, dim, eps=1e-5, momentum=0.1, device=None, dtype="float32"):
              super().__init__()
              self.dim = dim
              self.eps = eps
              self.momentum = momentum
              ### BEGIN YOUR SOLUTION
              self.weight = Parameter(init.ones(self.dim, requires_grad=True))
              self.bias = Parameter(init.zeros(self.dim, requires_grad=True))
      
              # test时需要使用全局均值和方差
              self.running_mean = init.zeros(self.dim)
              self.running_var = init.ones(self.dim)
              ### END YOUR SOLUTION
      
      
          def forward(self, x: Tensor) -> Tensor:
              ### BEGIN YOUR SOLUTION
              batch_size = x.shape[0]
              mean = x.sum((0,)) / batch_size
              x_minus_mean = x - mean.broadcast_to(x.shape)
              var = (x_minus_mean**2).sum((0,)) / batch_size
      
              if self.training:
                self.running_mean = (1-self.momentum) * self.running_mean + self.momentum * mean.data
                self.running_var = (1-self.momentum) * self.running_var + self.momentum * var.data
      
                x_std = ((var+self.eps)**0.5).broadcast_to(x.shape)
                x_normed = x_minus_mean / x_std
                return x_normed * self.weight.broadcast_to(x.shape) + self.bias.broadcast_to(x.shape)
              else: # test阶段,需要用全局的running_mean和running_var
                x_normed = (x-self.running_mean) / (self.running_var+self.eps)**0.5
                return x_normed * self.weight.broadcast_to(x.shape) + self.bias.broadcast_to(x.shape)
              ### END YOUR SOLUTION
      
    • Dropout
      class Dropout(Module):
          def __init__(self, p = 0.5):
              super().__init__()
              self.p = p
      
          def forward(self, x: Tensor) -> Tensor:
              ### BEGIN YOUR SOLUTION
              # 只有训练的时候才会用到dropout
              mask = init.randb(*x.shape, p=1-self.p)  # 返回与x形状相同的tensor,其每个元素值以概率p被保留为1,概率1-p被设置为0
              if self.training:
                x_mask = x * mask
                return x_mask / (1-self.p)
              else:
                return x
              ### END YOUR SOLUTION
      
    • Residual
      class Residual(Module):
          def __init__(self, fn: Module):
              super().__init__()
              self.fn = fn
      
          def forward(self, x: Tensor) -> Tensor:
              ### BEGIN YOUR SOLUTION
              # 残差就是简单的输入加输出
              return x + self.fn(x)
              ### END YOUR SOLUTION
      
  3. 实现各种优化器(常见优化算法看这里
    • SGD
      class SGD(Optimizer):
          def __init__(self, params, lr=0.01, momentum=0.0, weight_decay=0.0):
              super().__init__(params)
              self.lr = lr
              self.momentum = momentum
              self.u = {
             }  # 表示动量momentum,u[i]表示i号参数的动量值
              self.weight_decay = weight_decay  # 权重衰减系数
      
          def step(self):
              ### BEGIN YOUR SOLUTION
              # SGD with momentum,且包含正则项
              for i, param in enumerate(self.params):
                if i not in self.u:
                  self.u[i] = 0  # 将动量初始化为0
                if param.grad is None:  # 若梯度为None时,跳过后面对梯度的操作,直接进入下一次循环
                  continue
      
                grad_data = ndl.Tensor(param.grad.numpy(), dtype='float32').data \
                  + self.weight_decay * param.data  # 这里实现的是 L1 norm
                self.u[i] = self.momentum * self.u[i] + (1-self.momentum) * grad_data
                param.data = param.data - self.u[i] * self.lr
              ### END YOUR SOLUTION
      
    • Adam
      class Adam(Optimizer):
          def __init__(
              self,
              params,
              lr=0.01,
              beta1=0.9,
              beta2=0.999,
              eps=1e-8,
              weight_decay=0.0,
          ):
              super().__init__(params)
              self.lr = lr
              self.beta1 = beta1
              self.beta2 = beta2
              self.eps = eps
              self.weight_decay = weight_decay
              self.t = 0
      
              self.m = {
             }
              self.v = {
             }
      
          def step(self):
              ### BEGIN YOUR SOLUTION
              self.t += 1
              for i, param in enumerate(self.params):
                  if i not in self.m:
                      self.m[i] = ndl.init.zeros(*param.shape)
                      self.v[i] = ndl.init.zeros(*param.shape)
                  
                  if param.grad is None:
                      continue
                  # 和SGD momentum一样按照各自的公式写
                  grad_data = ndl.Tensor(param.grad.numpy(), dtype='float32').data \
                       + param.data * self.weight_decay
                  self.m[i] = self.beta1 * self.m[i] \
                      + (1 - self.beta1) * grad_data
                  self.v[i] = self.beta2 * self.v[i] \
                      + (1 - self.beta2) * grad_data**2
                  # 修正
                  u_hat = (self.m[i]) / (1 - self.beta1 ** self.t)
                  v_hat = (self.v[i]) / (1 - self.beta2 ** self.t)
                  param.data = param.data - self.lr * u_hat / (v_hat ** 0.5 + self.eps) 
              ### END YOUR SOLUTION
      
  4. 实现Dataset和DataLoader(非框架重点,可跳过)
    • Dataset:存储样本和对应标签
    • DataLoader:把Dataset包装成一个可迭代对象,以便访问样本
  5. 目前已经完成了神经网络的所有组件,那么就自行建造并训练一个MLP ResNet吧
    • 先根据ResNet的结构图把一个个模块堆叠起来
    • 然后定义一个epoch中的训练或测试流程(前向计算、输出loss、反向传播、用优化器里的step函数更新模型参数、再记录一下平均loss值什么的)
    • 最后编写在mnist数据集上训练模型的代码(先读取数据集、声明一个ResNet模型、声明优化器、用上面定义的训练/测试流程进行一个epoch的训练/测试

知识补充

优化算法

目前有很多优化算法,但是SGD with momentum和Adam是相对来说最重要的两个,是了解深度学习必须知道的两个优化算法

  1. Newton’s method:
    牛顿法的核心思想是对函数的一阶泰勒展开求解,推导过程如下:
    假设有函数 f ( x ) f(x) f(x),需要求解 x x x使 f ( x ) = 0 f(x)=0 f(x)=0。则在初始点 x 0 x_0 x0处将函数进行一阶泰勒展开有:
    f ( x ) = f ( x 0 ) + Δ f ( x ) ( x − x 0 ) f(x)=f(x_0)+\Delta f(x)(x-x_0) f(x)=f(x0)+Δf(x)(xx0)
    f ( x ) = 0 f(x)=0 f(x)=0带入有:
    x = x 0 − f ( x 0 ) f ′ ( x 0 ) x=x_0-\frac{f(x_0)}{f'(x_0)} x=x0f(x0)f(x0)
    由泰勒展开的原理,这里得到的 x x x只是对方程根的近似,但肯定比 x 0 x_0 x0更接近方程根。因此可以通过迭代的方式,在这个近似解 x x x处再进行一阶展开,进而得到更接近方程根的值,即得到下面迭代解方程根的公式:
    x t + 1 = x t − f ( x t ) f ′ ( x t ) x^{t+1}=x^t-\frac{f(x^t)}{f'(x^t)} xt+1=xtf(xt)f(xt)
    上面原理搞清楚之后,将损失函数相关值代入。我们的目的是求解 θ \theta θ使最小化 J ( θ ) J(\theta) J(θ),而 J ( θ ) J(\theta) J(θ)最小值对应着 Δ J (
  • 27
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于CMU 10-714 Deep Learning Systems 实现深度学习框架 needle 深度学习(Deep Learning,简称DL)是机器学习(Machine Learning,简称ML)领域中一个新的研究方向,其目标是让机器能够像人一样具有分析学习能力,识别文字、图像和声音等数据。深度学习通过学习样本数据的内在规律和表示层次,使机器能够模仿视听和思考等人类活动,从而解决复杂的模式识别难题。 深度学习的核心是神经网络,它由若干个层次构成,每个层次包含若干个神经元。神经元接收上一层次神经元的输出作为输入,通过加权和转换后输出到下一层次神经元,最终生成模型的输出结果。神经网络之间的权值和偏置是神经网络的参数,决定了输入值和输出值之间的关系。 深度学习的训练过程通常涉及反向传播算法,该算法用于优化网络参数,使神经网络能够更好地适应数据。训练数据被输入到神经网络中,通过前向传播算法将数据从输入层传递到输出层,然后计算网络输出结果与实际标签之间的差异,即损失函数。通过反向传播算法,网络参数会被调整以减小损失函数值,直到误差达到一定的阈值为止。 深度学习中还包含两种主要的神经网络类型:卷积神经网络(Convolutional Neural Networks,简称CNN)和循环神经网络(Recurrent Neural Networks,简称RNN)。卷积神经网络特别擅长处理图像数据,通过逐层卷积和池化操作,逐步提取图像中的高级特征。循环神经网络则适用于处理序列数据,如文本或时间序列数据,通过捕捉序列中的依赖关系来生成模型输出。 深度学习在许多领域都取得了显著的成果,包括计算机视觉及图像识别、自然语言处理、语音识别及生成、推荐系统、游戏开发、医学影像识别、金融风控、智能制造、购物领域、基因组学等。随着技术的不断发展,深度学习将在更多领域展现出其潜力。 在未来,深度学习可能会面临一些研究热点和挑战,如自监督学习、小样本学习、联邦学习、自动机器学习、多模态学习、自适应学习、量子机器学习等。这些研究方向将推动深度学习技术的进一步发展和应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值