pytorch的基础学习(每日一更)day02--线性回归

线性回归例子

github的网址->day01

https://blog.csdn.net/qq_43570557/article/details/122618446?spm=1001.2014.3001.5502

代码(详细注解)

#此例子是模拟线性回归
# (假设网络只有一层FC层)

import torch
import torchvision
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt


#1.先设置所需要我的超参数
#Linear的输入、输出节点数,学习率,num_epochs

input_size=1
output_size=1
num_epochs=60
learning_rate=0.001

#2.设置数据集
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
                    [9.779], [6.182], [7.59], [2.167], [7.042],
                    [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)

y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
                    [3.366], [2.596], [2.53], [1.221], [2.827],
                    [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)


#3.构建网络
model=nn.Linear(input_size,output_size)
#选择损失函数
criterion=nn.MSELoss()
#选择优化器
optimizer=torch.optim.SGD(params=model.parameters(),
                lr=learning_rate)

#4.训练模型
for epoch in range(1,num_epochs+1):
    #读取数据
    X_train=torch.from_numpy(x_train)
    Y_train=torch.from_numpy(y_train)

    #forward
    prev_y=model(X_train)

    #计算损失
    loss=criterion(prev_y,Y_train)

    #backward and optimize
        #清空grad
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    #做一个判断(是否输出损失)
    if epoch%5==0:
        print('Epoch [{}/{}],Loss:{:.4f}'.format(epoch,num_epochs,loss.item()))
                            #小数点之后保留四位


#5.detach()[source]
        # 返回一个新的Variable,从当前计算图中分离下来的,
        # 但是仍指向原变量的存放位置,不同之处只是requires_grad为false,
        # 得到的这个Variable永远不需要计算其梯度,不具有grad。
        # 即使之后重新将它的requires_grad置为true,它也不会具有梯度grad

#这预测是X与Y一一对应
predict=model(torch.from_numpy(x_train)).detach().numpy()


#6.画图
#由于plot是画直线图的,所以原始数据点要设置“ro”
plt.plot(x_train,y_train,"ro",label="original data")
plt.plot(x_train,predict,label="fitted line")
plt.legend()  #图例显示label的
plt.show()

红点是原始数据,蓝点是通过拟合得到的回归线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值