博弈论学习 | 第八章 Modeling Network Traffic using Game Theory

Chapter 8 Modeling Network Traffic using Game Theory

本章主要介绍博弈论在交通网络中的应用,会发现有一个有意思的点:将博弈论应用在交通网络中会出现“布雷斯悖论”——为交通网络添加容量甚至会减缓流量。

主要模块如下:

  1. Traffic at Equilibrium
  2. Braess’s Paradox
  3. Advanced Material: The Social Cost of Traffic at Equilibrium
    1. How to Find a Traffic Pattern at Equilibrium
    2. Comparing Equilibrium Traffic to the Social Optimum

1. Traffic at Equilibrium

image-20220208174441575

问题描述:4000位司机,从A开往B(假设从郊区到市中心),途中可经过C、D两个站点,每条边上表示花费时间,其中x表示该路上经过的司机数量,A-D和C-B的道路无论有多少两车通过都只需45分钟,A-C和D-B都需要x/100分钟,定义payoff为花费时间的负值。

方案:

  1. 4000一条路all in——4000/100+45=85分钟

  2. 分成两部分——2000/100+45=65分钟

分析:

  1. 和前面game不同的点:玩家的数量及可用的策略大大增加,每个玩家的收益取决于所有人所选择的策略。

  2. 最优策略:不存在,最佳选择是其他玩家都在使用另一条路线。

  3. 纳什均衡:2000-2000的所有策略组(也恰好是等量平衡),因为如果存在两条路线司机数量不对等情况,就存在更小的x/100+45花费时间

2. Braess’s Paradox

上述情况属于一种特殊且乐观的纳什均衡,因为每位司机只考虑自己的决策达到的纳什均衡恰好是等量平衡,而如果给该交通网络增加一些改变则会发生很大变化。

image-20220208174452146

问题描述:基于上述问题,在从C到D间增加道路,并假设C-D之间无论通过多少辆车都不会花费时间(可理解为超高速公路)。

纳什均衡分析

  1. 纳什均衡点:只存在唯一的纳什均衡点——所有司机都选择经过C-D,最后payoff=4000/100+0+4000/100=80
  2. C-D的路线像一个漩涡,将所有司机拉进来,这导致对所有人都不利,因为司机个人只考虑的行为没有办法回到对每个人都更好的平衡方案。

Braess’s Paradox

在运输网络中增加资源有时会损害平衡

例子:

  1. 破坏修建公园的六车道高速公路实际上改善了进出城市的交通时间
  2. 囚徒困境:假设囚徒开始只有不坦白的选项,而警察设计坦白认罪减轻惩罚的协议(增加了一种策略选项),最后会导致囚徒选择都坦白的相比之前更坏的平衡。

为什么感觉违背常理?

答:因为我们普遍认为”升级/更新“是一件好事,所以事与愿违时很惊讶。

问题分析

Q1:添加C-D的边之后会差多少?

答:有上界,假设花费时间为ax+b线性关系,线性花费时间下,变坏的情况不超过原来的4/3倍(仅限在该问题中,证明引自论文,不展开阐述);非线性可能更坏。

例子:将45改成40,增加C-D路线将达到最坏情况

image-20220208174509901

两条路平均司机数量:payoff=2000/100+40=60

image-20220208174524164

增加C-D路线后:payoff=4000/100+0+4000/100=80

分析:80/60=4/3,恰好达到最坏情况,因为问题中只存在4000位司机,所有司机选择C-D后A-C和D-B的花费时间都为4000/100=40,恰好等于A-D,C-B花费时间,否则将选择A-D,C-B这两条线路。

拓展

鉴于所有都选择C-D的情况,所以可以设置机制——收费等,增加C-D路线成本。

3. Advanced Material: The Social Cost of Traffic at Equilibrium

布雷斯悖论即处于平衡状态的网络流量可能不是社会最优的。在本节中,我们试图量化平衡状态离最优交通平衡状态的距离,找到社会最优和纳什均衡的差距。

image-20220208174531264

社会最优socially optimal

对于一个traffic pattern司机花费时间总和social cost最小

image-20220208174536806

  1. 对所有线性函数网络中,是否总是存在纯策略均衡?

    答:是的,通过best-response dynamics可以找到

  2. 是否始终存在一种社会成本不大于社会最优的均衡交通模式?

    答:
    1 2 ⋅  Social-Cost  ( Z ) ≤  Energy  ( Z ) ≤  Social-Cost  ( Z ) \frac{1}{2} \cdot \text { Social-Cost }(Z) \leq \text { Energy }(Z) \leq \text { Social-Cost }(Z) 21 Social-Cost (Z) Energy (Z) Social-Cost (Z)

best response: 司机考虑到其他人正在做的事情,替代路径获得严格降低的旅行时间。

How to Find a Traffic Pattern at Equilibrium

选择每位司机的best response直到每个人都对当前情况做出best response,达到平衡

Matching Pennies游戏?是否存在一个这样的平衡?

答:交通网络存在,且只要证明

Analyzing Best-Response Dynamics Via Potential Energy

*potential energy* of a traffic pattern:
Energy ⁡ ( e ) = T e ( 1 ) + T e ( 2 ) + ⋯ + T e ( x ) \operatorname{Energy}(e)=T_{e}(1)+T_{e}(2)+\cdots+T_{e}(x) Energy(e)=Te(1)+Te(2)++Te(x)
逻辑:

  1. best response:司机一定会选择使得自己payoff增加才会修改路径,

  2. best response——会减少势能吗?如何保证?

  3. 单步减少势能——>traffic pattern总势能减少

two steps:

  1. 将原路径移除
  2. 增加新路径

对比:

image-20220208174546277

分析:

energy设计的巧妙之处在于单步从网络中删除或添加改变的势能等于社会成本值的变化。

Relating the Travel Time at Equilibrium and Social Optimality

Energy ⁡ ( e ) = T e ( 1 ) + T e ( 2 ) + ⋯ + T e ( x ) \operatorname{Energy}(e)=T_{e}(1)+T_{e}(2)+\cdots+T_{e}(x) Energy(e)=Te(1)+Te(2)++Te(x)

 Total-Travel-Time  ( e ) = x T e ( x ) \text { Total-Travel-Time }(e)=x T_{e}(x)  Total-Travel-Time (e)=xTe(x)

 Total-Travel-Time  ( e ) = T e ( x ) + T e ( x ) + ⋯ + T e ( x ) ⏟ x  terms  \text { Total-Travel-Time }(e)=\underbrace{T_{e}(x)+T_{e}(x)+\cdots+T_{e}(x)}_{x \text { terms }}  Total-Travel-Time (e)=x terms  Te(x)+Te(x)++Te(x)

结论:
1 2 ⋅ Social ⁡ − Cost ⁡ ( Z ) ≤ Energy ⁡ ( Z ) ≤ Social ⁡ − Cost ⁡ ( Z ) \frac{1}{2} \cdot \operatorname{Social}-\operatorname{Cost}(Z) \leq \operatorname{Energy}(Z) \leq \operatorname{Social}-\operatorname{Cost}(Z) 21SocialCost(Z)Energy(Z)SocialCost(Z)

证明:
T e ( 1 ) + T e ( 2 ) + ⋯ + T e ( x ) = a e ( 1 + 2 + ⋯ + x ) + b e x = a e x ( x + 1 ) 2 + b e x = x ( a e ( x + 1 ) 2 + b e ) ≥ 1 2 x ( a e x + b e ) = 1 2 x T e ( x ) . \begin{aligned} T_{e}(1)+T_{e}(2)+\cdots+T_{e}(x) &=a_{e}(1+2+\cdots+x)+b_{e} x \\ &=\frac{a_{e} x(x+1)}{2}+b_{e} x \\ &=x\left(\frac{a_{e}(x+1)}{2}+b_{e}\right) \\ & \geq \frac{1}{2} x\left(a_{e} x+b_{e}\right) \\ &=\frac{1}{2} x T_{e}(x) . \end{aligned} Te(1)+Te(2)++Te(x)=ae(1+2++x)+bex=2aex(x+1)+bex=x(2ae(x+1)+be)21x(aex+be)=21xTe(x).
Energy ⁡ ( e ) = T e ( 1 ) + T e ( 2 ) + ⋯ + T e ( x ) ≤  Total-Travel-Time  ( e ) = T e ( x ) + T e ( x ) + ⋯ + T e ( x ) ⏟ x  terms  \operatorname{Energy}(e)=T_{e}(1)+T_{e}(2)+\cdots+T_{e}(x) \leq \text { Total-Travel-Time }(e)=\underbrace{T_{e}(x)+T_{e}(x)+\cdots+T_{e}(x)}_{x \text { terms }} Energy(e)=Te(1)+Te(2)++Te(x) Total-Travel-Time (e)=x terms  Te(x)+Te(x)++Te(x)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nosimper

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值