原文链接:CSDN-脉冲神经网络(SNN)论文阅读(六)-----ECCV-2024 脉冲驱动的SNN目标检测框架:SpikeYOLO
Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection
目录
论文信息
论文标题:Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection
论文地址
code
由中科院自动化所(李国齐团队)研究人员发表于ECCV 2024 Oral。
主要贡献
- 设计了SpikeYOLO architecture用于目标检测。
- 设计了新的脉冲神经元:I-LIF,训练时保持整数值通信推理时重参数化为低功耗的二元脉冲。
- 在静态以及神经形态目标检测数据集上均取得了SOTA性能。
SpikeYOLO
- 宏观设计参考YOLOv8,微观设计参考作者团队之前提出的Meta-SpikeFormer[1]中的meta SNN block。
- 设计了SNN-Block-1和SNN-Block-2,其他架构和YOLO