脉冲神经网络(SNN)论文阅读(六)-----ECCV-2024 脉冲驱动的SNN目标检测框架:SpikeYOLO

ECCV-2024脉冲驱动SNN目标检测框架SpikeYOLO

原文链接:CSDN-脉冲神经网络(SNN)论文阅读(六)-----ECCV-2024 脉冲驱动的SNN目标检测框架:SpikeYOLO

Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection

目录

论文信息

论文标题:Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection
论文地址
code
由中科院自动化所(李国齐团队)研究人员发表于ECCV 2024 Oral。

主要贡献

  • 设计了SpikeYOLO architecture用于目标检测。
  • 设计了新的脉冲神经元:I-LIF,训练时保持整数值通信推理时重参数化为低功耗的二元脉冲。
  • 在静态以及神经形态目标检测数据集上均取得了SOTA性能。
    在这里插入图片描述

SpikeYOLO

  • 宏观设计参考YOLOv8,微观设计参考作者团队之前提出的Meta-SpikeFormer[1]中的meta SNN block。
  • 设计了SNN-Block-1和SNN-Block-2,其他架构和YOLO
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值