使用matlab对信号进行经典谱估计
部分内容摘自 https://blog.csdn.net/liusandian/article/details/53386581
功率谱和频谱
先简要说计算:
功率谱:信号先自相关再作FFT
频 谱:信号直接作FFT
功率谱:
信号的传播都是看不见的,但是它以波的形式存在着,这类信号会产生功率,单位频带的信号功率就被称之为功率谱。它可以显示在一定的区域中信号功率随着频率变化的分布情况。
功率谱可以从两方面来定义:
一个 是自相关函数的傅立叶变换;(维纳辛钦定理)
另一个 是时域信号傅氏变换模平方然后除以时间长度。(来自能量谱密度)
根据parseval定理,信号傅氏变换模平方被定义为能量谱,能量谱密度在时间上平均就得到了功率谱。
频谱:
频谱是常常指信号的Fourier变换。
(1-7 作者:Yorkxu)转载的理解:
(1)信号通常分为两类:能量信号和功率信号;
- 能量信号:又称能量有限信号,是指在所有时间上总能量不为零且有限的信号。
- 功率信号:它的能量为无限大,它对通信系统的性能有很大影响,决定了无线系统中发射机的电压和电磁场强度。
(2)一般来讲,能量信号其傅氏变换收敛(即存在),而功率信号傅氏变换通常不收敛(当然,若信号存在周期性,可引入特殊数学函数(Delta)表征傅氏变换的这种非收敛性);
(3)信号是信息的搭载工具,而信息与随机性紧密相关,所以实际信号多为随机信号,这类信号的特点是状态随机性随时间无限延伸,其样本能量无限。换句话说,随机信号(样本)大多属于功率信号而非能量信号,它并不存在傅氏变换,亦即不存在频谱;
(4)若撇开搭载信息的有用与否,随机信号又称随机过程,很多噪声属于特殊的随机过程,它们的某些统计特性具有平稳性,其均值和自相关函数具有平稳性。对于这样的随机过程,自相关函数蜕化为一维确定函数,前人证明该确定相关函数存在傅氏变换;
(5)能量信号频谱通常既含有幅度也含有相位信息;幅度谱的平方(二次量纲)又叫能量谱(密度),它描述了信号能量的频域分布;功率信号的功率谱(密度)描述了信号功率随频率的分布特点(密度:单位频率上的功率),业已证明,平稳信号功率谱密度恰好是其自相关函数的傅氏变换。对于非平稳信号,其自相关函数的时间平均(对时间积分,随时变性消失而再次退变成一维函数)与功率谱密度仍是傅氏变换对;
(6)实际中我们获得的往往仅仅是信号的一段支撑,此时即使信号为功率信号,截断之后其傅氏变换收敛,但此变换结果严格来讲不属于任何“谱”(进一步分析可知它是样本真实频谱的平滑:卷积谱);
(7)对于(6)中所述变换若取其幅度平方,可作为平稳信号功率谱(密度)的近似,是为经典的“周期图法”;
补充:(8) 一个信号的频谱,只是这个信号从时域表示转变为频域表示,只是同一种信号的不同的表示方式而已;而功率谱是从能量的观点对信号进行的研究,其实频谱和功率谱的关系归根揭底还是信号和功率,能量等之间的关系。
谱估计
功率谱估计一般分成两大类:
经典谱估计,也称为非参数谱估计。
现代谱估计,也称为参数谱估计。
根据维纳-辛钦定理,平稳随机过程的功率谱等于自相关序列的DTFT:
matlab做信号预处理
一开始博主录音了内容为“现代信号处理”的话音,并存为单声道wav做处理,但是因为信号过长 且发音不标准 导致实验效果受影响,所以减少话音长度,仅仅读取“代”的话音作为分析样本。
上源码:
close all;clear all;
% read speech waveform from a file
[s, fs] = audioread('代.wav');
% set analysis parameters, pre-emphasise and windowing
%根据话音位置,取8192可以把话音主要部分加入其中
N = 8192;
Nfft = 8192;
n0 = 1000;
x = s(n0 : n0+N-1);
x1 = filter([1 -0.97], 1, x); %预加重 滤波器
%作用:消除6dB/oct(分贝/倍频程)的跌落,使语音信号的频谱变得平坦。
w = (window('hamming', N));
xw = x1 .* w; %加窗
% Estimate PSD of the short-time segment
Sxw = fft(xw, Nfft);
Sxdb = 20*log10(abs(Sxw(1 : Nfft/2))) - 10*log10(N);
%Sxdb 功率谱:时域fft取模平方后除以信号的长度 转换成db
figure;
subplot(4,1,1);
plot(s); xlim([0 length(s)]); ylim([-0.65 0.65]);
ylabel('Amplitude'); xlabel('Time (n)');
subplot(4,1,2);
plot(xw); xlim([0 length(x)]); ylim([-0.225 0.225]);
ylabel('Amplitude'); xlabel('Time (n)');
f = (0 : Nfft/2-1)*fs / Nfft / 1000;%取前一半 后一半是翻转
subplot(2,1,2);
plot(f, Sxdb);
ylabel('Magnitude (dB)'); xlabel('Frequency (kHz)');
效果图:
从上至下:原始话音、经过预处理后的话音、话音的理论上的功率谱
经典谱估计法1:相关图法
为了减少谱估计的方差,采用长度为2M-1的窗函数对自相关函数进行截取(联系上式),得
可使用矩形窗和三角窗。
估计自相关序列:
这里解释一下,下标之所以是0~L-1 且r关于l=0对称,是因为数学推导:把-l带入r(l)依然能得到后面式子的结果。(问的老师)
构成加窗自相关序列:
计算序列 f(l) 的NFFT(一般选NFFT >2L-1)点DFT/FFT,即为功率谱估计的采样值:
r = zeros(2*N/2-1, 1);%(-(N/2-1)~(N/2-1))共2L-1个点 计算自相关
for k = 1 : N/2
x1 = x(k : N);
x2 = x(1 : N+1-k);
r(N/2+k-1) = x1' * x2 / N;
r(N/2-k+1) = r(N/2+k-1); %r(-k) = r(k)
end
rx = r ;
Sxz1 = fft(rx, Nfft);
Sxdbz1 = 10*log10(abs(Sxz1(1 : Nfft/2)));%转换成db
subplot(4,1,3);
plot(f, Sxdbz1);
ylabel('Magnitude (dB)'); xlabel('Frequency (kHz)');
title('Correlogram (Rectangle)');
%----------------相关图法 三角窗 --------------%
w = triang(2*N/2-1)'; %三角窗 加窗后效果
rx = r .* w';
Sxz2 = fft(rx, Nfft);
Sxdbz2 = 10*log10(abs(Sxz2(1 : Nfft/2)));
subplot(4,1,4);
plot(f, Sxdbz2);
ylabel('Magnitude (dB)'); xlabel('Frequency (kHz)');
title('Correlogram (Triangular)');
效果图:
下两幅是相关图法的结果,分别使用了矩形窗和三角窗
经典谱估计法2:周期图法
由本文开始给的定义,功率谱的计算可以是时域信号傅氏变换模平方然后除以时间长度。
但是此方法,当周期图的方差(当N较大时),方差:
(可以用多次实验取平均来缓解)
改进:
- 多个周期图求平均
把数据记录切分为K个分段,分别求周期图,然后求平均。每段长L,偏移量D
(上式@号其实是=号)
PA: 周期图求平均;
Bartlett方法:D=L;
Welch方法: D=L/2
Bartlett方法就是把数据分D段,每段fft模平方除以每段长度,再把D段的s相加再平均。
Welch方法就是有重复的分段,具体如下图:
%----------------周期图法 Bartlett谱估计--------------%
Sx = zeros(1, Nfft/2);K = 4; L = N/K;
for k = 1 : K
ks = (k-1)*L + 1;
ke = ks + L - 1;
X = fft(x(ks:ke), Nfft);
X = (abs(X)).^2; %周期图法这里要abs + 平方 注意
for i = 1 : Nfft/2
Sx(i) = Sx(i) +X(i);
end
end
for i = 1 : Nfft/2
Sx(i) = 10*log10(Sx(i)/(K*L));
end
figure;
subplot(4,1,1);
plot(f, Sx);
ylabel('Magnitude (dB)'); xlabel('Frequency (kHz)');
title('Bartlett Estimate, N=4096, K=4, D=L=1024')
%----------------周期图法 Welch谱估计--------------%
Nfft = 8192;
K = 4;
D = fix(Nfft/2 / (K+1));%向0方向靠拢取整 分为K+1格,可以重叠K次做fft
L = 2*D;
Sxw = zeros(1, Nfft/2);
w = (window('hamming', L))';
for k = 1 : K
ks = (k-1)*D + 1;
ke = ks + L - 1;
xk = x(ks:ke) .* w; %时域加窗
X = fft(xk, Nfft);
X = (abs(X)).^2;
for i = 1 : Nfft/2
Sxw(i) = Sxw(i) + X(i); %这里只取前N/2个点 因为后N/2个点是前的翻转
end
end
for i = 1 : Nfft/2
Sxw(i) = 10*log10(Sxw(i)/(K*L)); %转换成db
end
subplot(4,1,2); plot(f, Sxw);
ylabel('Magnitude (dB)'); xlabel('Frequency (kHz)');
title('Welch Estimate, N=4096, K=4, D=819, L=1638');
效果图是效果图的第一和第二张。
语谱图
语音信号的时频分布为定义在二维空间的函数,把时频分布画成二维灰度图像的形式,即为语谱图。
MATLAB 函数
[S, f, t, P] = spectrogram(x, window, noverlap, nfft, fs);
效果图
%--------------语谱图--------------%
bw = 300;
nwin = round(2*fs/bw);
%nfft = 512;
nfft = 1024;
xy = filter([1 -0.97], 1, s);
noverlap = nwin - round(length(s) / 500);
% compute and show
figure;
[S, f, t, P] = spectrogram(xy, nwin, noverlap, nfft, fs);
surf(t, f/1000, 10*log10(abs(P)), 'EdgeColor', 'none');
axis xy; axis tight; colormap(jet); view(0, 90);
xlabel('Time (s)'); ylabel('Frequency (kHz)');
%title('Broadband Spectrogram');
title('Narrowband Spectrogram');
END
致敬北邮尹霄丽老师!公式和很多概念都引用老师现代信号处理课程的教案,老师上课讲的很细致很明白,很荣幸能作为老师的学生。