信号处理与向量空间

信号处理与向量空间

向量表示信号

  • 一个离散信号序列能够很自然的表示成向量: x [ n ] = [ x 0 , x 1 , ⋯   , x N − 1 ] T x[n] = [x_0, x_1, \cdots, x_{N-1}]^T x[n]=[x0,x1,,xN1]T
  • 为什么要用向量表示信号?因为更简单的数学表达和统一的信号处理框架
    1. 对不同类型的信号(四种:有限长、无限长、周期、有限支持)具有相同的处理框架
    2. 对连续信号具有相同的处理框架
    3. 更容易解释傅里叶变换
    4. 更容易解释采样与插值
    5. 在近似估计和压缩中非常有用
    6. 通讯系统设计中非常重要

向量空间

  • 常见的向量空间。例如有 R 2 \mathbb{R}^2 R2 R 3 \mathbb{R}^3 R3是二维和三维欧几里得空间
  • l 2 ( Z ) \mathcal{l}_2(\mathbb{Z}) l2(Z):具有无限长度且平方可和的序列所构成的空间。例如矩形序列
  • L 2 ( [ a , b ] ) L_2([a,b]) L2([a,b]):在区间 [ a , b ] [a,b] [a,b]上平方可积的函数所构成的空间(没错,向量可以是函数)。例如 { x = sin ⁡ ( t ) , t ∈ [ − 1 , 1 ] } ∈ L 2 ( [ − 1 , 1 ] ) \{x=\sin(t), t\in [-1, 1]\}\in L_2([-1,1]) {x=sin(t),t[1,1]}L2([1,1]),因为 sin ⁡ ( t ) \sin(t) sin(t) [ − 1 , 1 ] [-1,1] [1,1]上平方可积
  • 向量空间的基本性质和操作
    在这里插入图片描述

向量的内积

  • 内积是一个标量,内积用于衡量向量之间的相似度
  • 两个向量的内积操作可以表示为: &lt; x , y &gt; = ∥ x ∥ ∥ y ∥ cos ⁡ θ &lt;\mathbf{x},\mathbf{y}&gt;=\Vert \mathbf{x}\Vert \Vert \mathbf{y}\Vert \cos\theta <x,y>=xycosθ,其中 θ \theta θ表示向量之间的夹角
  • 如果两个向量的内积为0,那么它们正交(相似度为0, θ = π / 2 \theta=\pi/2 θ=π/2
  • 向量内积的基本性质
    在这里插入图片描述
  • L 2 ( [ − 1 , 1 ] ) L_2([-1,1]) L2([1,1])的内积定义: &lt; x , y &gt; = ∫ − 1 1 x ( t ) y ( t ) d t &lt;\mathbf{x},\mathbf{y}&gt; = \int_{-1}^1x(t)y(t) \mathbf{d}t <x,y>=11x(t)y(t)dt。下图是一个例子
    在这里插入图片描述
  • 向量的长度用内积定义: ∥ x ∥ = &lt; x , x &gt; \Vert x\Vert = \sqrt{&lt;\mathbf{x},\mathbf{x}&gt; } x=<x,x>
  • 向量之间的距离用内积定义: d ( x , y ) = ∥ x − y ∥ \mathbf{d}(\mathbf{x},\mathbf{y}) = \Vert \mathbf{x}-\mathbf{y}\Vert d(x,y)=xy。例如在二维空间中 ∥ x − y ∥ = ( x 0 − y 0 ) 2 + ( x 1 − y 1 ) 2 \Vert \mathbf{x}-\mathbf{y}\Vert = \sqrt{(x_0-y_0)^2 + (x_1-y_1)^2} xy=(x0y0)2+(x1y1)2 ;在 L 2 ( [ − 1 , 1 ] ) L_2([-1,1]) L2([1,1]) ∥ x − y ∥ = ∫ − 1 1 ∣ x ( t ) − y ( t ) ∣ 2 d t \Vert \mathbf{x}-\mathbf{y}\Vert = \int_{-1}^1\vert x(t) - y(t) \vert^2 \mathbf{d}t xy=11x(t)y(t)2dt
  • 一组信号可以表示成一个向量: x [ n ] = [ x 0 , x 1 , ⋯ &ThinSpace; , x N − 1 ] T x[n] = [x_0, x_1, \cdots, x_{N-1}]^T x[n]=[x0,x1,,xN1]T,其中 x [ n ] x[n] x[n]是一个复数,那么
    • 有限长度的信号的内积表示为: &lt; x , y &gt; = ∑ n = 0 N − 1 x ∗ [ n ] y [ n ] &lt;\mathbf{x},\mathbf{y}&gt; = \sum_{n=0}^{N-1}x^*[n]y[n] <x,y>=n=0N1x[n]y[n] ∗ * 表示共轭
    • 无限长度的信号的内积表示为: &lt; x , y &gt; = ∑ − ∞ ∞ x ∗ [ n ] y [ n ] &lt;\mathbf{x},\mathbf{y}&gt; = \sum_{-\infty}^{\infty}x^*[n]y[n] <x,y>=x[n]y[n]。其内积可能会无穷大,因此我们要求这个无限长度的信号属于 l 2 ( Z ) \mathcal{l}_2(\mathbb{Z}) l2(Z)空间,即要求 ∑ ∣ x [ n ] ∣ 2 &lt; ∞ \sum \vert x[n]\vert^2 &lt; \infty x[n]2<

基向量

  • 任意一个向量都通过线性组合基向量来得到。下图为二维空间的两个例子
    在这里插入图片描述
    在这里插入图片描述

  • 基向量间要求线性无关,否则无法表示整个空间的向量在这里插入图片描述

  • 一组信号 x [ n ] = [ x 0 , x 1 , ⋯ &ThinSpace; , x N − 1 ] T x[n] = [x_0, x_1, \cdots, x_{N-1}]^T x[n]=[x0,x1,,xN1]T,可以看做一个N维的向量

  • 一个无限长度的信号(向量)可以表示为: x = ∑ k = 0 ∞ α k w ( k ) \mathbf{x}= \sum_{k=0}^{\infty} \alpha_k w^{(k)} x=k=0αkw(k),其中 α k \alpha_k αk为缩放系数, w ( k ) w^{(k)} w(k)为基向量。

  • 函数向量空间: f ( t ) = ∑ k α k h ( k ) ( t ) f(t) = \sum_k \alpha_k h^{(k)}(t) f(t)=kαkh(k)(t)。其中 h ( k ) ( t ) h^{(k)}(t) h(k)(t)是一个基函数,例如傅里叶变换的基函数: 1 / 2 1/\sqrt 2 1/2 cos ⁡ π t \cos \pi t cosπt sin ⁡ π t \sin \pi t sinπt cos ⁡ 2 π t \cos 2\pi t cos2πt sin ⁡ 2 π t \sin 2\pi t sin2πt也就是说傅里叶变换其实是一种基的变化

  • 已知 x \mathbf{x} x w ( k ) w^{(k)} w(k) α k \alpha_k αk α k = &lt; w ( k ) , x &gt; \alpha_k = &lt;w^{(k)}, \mathbf x&gt; αk=<w(k),x>

  • 如何换基? x = ∑ k = 0 K − 1 α k w ( k ) = ∑ k = 0 K − 1 β k v ( k ) \mathbf{x} = \sum_{k=0}^{K-1}\alpha_k w^{(k)}=\sum_{k=0}^{K-1}\beta_k v^{(k)} x=k=0K1αkw(k)=k=0K1βkv(k),其中 v^{(k)是一组新的标准正交基,如何求 β k \beta_k βk
    β k = &lt; v ( k ) , x &gt; = &lt; v ( k ) , ∑ k = 0 K − 1 α k w ( k ) &gt; = ∑ k = 0 K − 1 α k &lt; v ( k ) , w ( k ) &gt; \begin{array}{l} \beta_k &amp;= &lt;v^{(k)}, \mathbf{x}&gt; \\ &amp;= &lt;v^{(k)}, \sum_{k=0}^{K-1}\alpha_k w^{(k)}&gt; \\ &amp;= \sum_{k=0}^{K-1}\alpha_k &lt;v^{(k)}, w^{(k)}&gt; \\ \end{array} βk=<v(k),x>=<v(k),k=0K1αkw(k)>=k=0K1αk<v(k),w(k)>

基于子空间的近似估计

  • 向量子空间:2D平面是3D空间的一个子空间;偶函数是函数的子空间
  • 用正交投影来做降维,将向量投影到子空间中,得到向量的近似估计
  • 最小二乘估计: s ( k ) {s^{(k)}} s(k)是子空间S的一组标准基,那么向量 x \mathbf{x} x正交投影的结果为
    x ^ = ∑ k = 0 K − 1 &lt; s ( k ) , x &gt; s ( k ) \hat \mathbf{x} = \sum_{k=0}^{K-1} &lt;s^{(k)}, \mathbf{x}&gt; s^{(k)} x^=k=0K1<s(k),x>s(k)
  • 正交投影的结果是“最好”的,因为:
    1. 具有全局最小误差: arg ⁡ min ⁡ y ∈ S ∥ x − y ∥ = x ^ \mathop{\arg \min}_{y\in S} \Vert \mathbf x- \mathbf y \Vert = \hat \mathbf{x} argminySxy=x^
    2. 不包含任何误差信息: &lt; x − x ^ , x ^ &gt; = 0 &lt;\mathbf x - \hat \mathbf x, \hat \mathbf x&gt; = 0 <xx^,x^>=0

一个近似估计的例子:用多项式函数估计 sin ⁡ t \sin t sint

多项式 P N [ − 1 , 1 ] ∈ L 2 [ − 1 , 1 ] P_N[-1,1]\in L_2[-1,1] PN[1,1]L2[1,1],一个多项式可以表示为: p = a 0 , + a 1 t + ⋯ + a N − 1 t N − 1 p = a_0, + a_1 t + \cdots + a_{N-1}t^{N-1} p=a0,+a1t++aN1tN1

多项式的基: s ( k ) = t k s^{(k)} = t^k s(k)=tk。它不是标准正交的

现在有 x = sin ⁡ t ∈ L 2 [ − 1 , 1 ] x = \sin t \in L_2[-1,1] x=sintL2[1,1] P 3 [ − 1 , 1 ] P_3[-1,1] P3[1,1]去估计它。

  1. 建立标准化的基。利用Gram-Smith方法可以标准化一组基,Gram-Smith算法有两个步骤:
    step 1: p ( k ) = s ( k ) − ∑ &lt; u ( k ) , s ( k ) &gt; u ( k ) p^{(k)} = s^{(k)} - \sum_{}^{}&lt;u^{(k)}, s^{(k)}&gt;u^{(k)} p(k)=s(k)<u(k),s(k)>u(k),如果k=0,那么 p ( 0 ) = s ( 0 ) p^{(0)} = s^{(0)} p(0)=s(0)
    step 2: u ( k ) = p ( k ) / ∥ p ( k ) ∥ u^{(k)} = p^{(k)}/\Vert p^{(k)}\Vert u(k)=p(k)/p(k)
    现在,我们对 1 , t , t 2 {1, t, t^2} 1,t,t2三个基做标准化,其步骤如下
    在这里插入图片描述
    这组基被称为“Legendre Polynomials”

  2. 做正交投影,求系数。步骤如下:
    在这里插入图片描述
    所以,在 P 3 [ − 1 , 1 ] P_3[-1,1] P3[1,1]上, sin ⁡ t ≈ α 1 u ( 1 ) = 0.9035 t \sin t \approx \alpha_1 u^{(1)}=0.9035t sintα1u(1)=0.9035t

用泰勒展开估计的结果为: sin ⁡ t ≈ t \sin t \approx t sintt

在这里插入图片描述

两种估计的误差:
在这里插入图片描述

总结

  • 信号序列可以很自然的用向量来表示;用向量表示信号,在信号处理上有很大的方便
  • 向量的内积用来衡量向量之间的相似度
  • 向量可以用基向量的线性组合表示
  • 可以用子空间来对向量正交投影,对向量做近似估计
  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值